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Vector Spaces

1.1 Motivation

The notion of a vector space is an abstraction of the familiar set of
vectors in two or three dimensional Euclidian space. For example, let
~x = (x1, x2) and ~y = (y1, y2) be two vectors in the plane R2. Then
we have the notion of addition of these vectors so as to get a new
vector denoted by ~x+ ~y, and it is defined by

~x+ ~y = (x1 + y1, x2 + y2).

This addition has an obvious geometric meaning: If O is the coordi-
nate origin, and if P and Q are points in R2 representing the vectors
~x and ~y respectively, then the vector ~x+ ~y is represented by a point
R in such way that OR is the diagonal of the parallelogram for which
OP and OQ are adjacent sides.

Also, if α is a positive real number, then the multiplication of ~x
by α is defined by

α~x = (αx1, αx2).

Geometrically, the vector ~αx is an elongated or contracted form of
~x in the direction of ~x. Similarly, we can define α~x with a nega-
tive real number α, so that α~x represents in the negative direction.
Representing the coordinate-origin by ~0, and −~x := (−1)~x, we see
that

~x+~0 = ~x, ~x+ (−~x) = ~0.

We may denote the sum ~x+ (−~y) by ~x− ~y.
Now, abstracting the above properties of vectors in the plane, we

define the notion of a vector space.
We shall denote by F the field of real numbers or the field of

complex numbers. If special emphasis is required, then the fields
of real numbers and complex numbers will be denoted by R and C,
respectively.
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2 Vector Spaces

1.2 Definition and Some Basic Properties

Definition 1.1 (Vector space) A vector space over F is a set V
together with two operations called (i) addition which associates each
pair (x, y) of elements in V a unique element in V denoted by x+ y,
and (ii) scalar multiplication which associates each pair (α, x) with
α ∈ F and x ∈ V , a unique element in V denoted by αx, so that
these operations satisfy the following axioms:

(a) x+ y = y + x ∀x, y ∈ V .

(b) (x+ y) + z = x+ (y + z) ∀x, y, z ∈ V .

(c) ∃ θ ∈ V such that x+ θ = x ∀x ∈ V .

(d) ∀x ∈ V , ∃ x̃ ∈ V such that x+ x̃ = θ.

(e) α(x+ y) = αx+ αy ∀α ∈ F, ∀x, y ∈ V .

(f) (α+ β)x = αx+ βx ∀α, β ∈ F, ∀x ∈ V .

(g) (αβ)x = α(βx) ∀α, β ∈ F, ∀x ∈ V .

(h) 1x = x ∀x ∈ V .

Elements of a vector space are called vectors, and elements of
the field F (over which the vector space is defined) are often called
scalars.

Proposition 1.1 Let V be a vector space, and θ1 and θ2 in V be
such that

x+ θ1 = x and x+ θ2 = x ∀x ∈ X.

Then θ1 = θ2.

Proof. Using the hypothesis and axioms (a) and (c), we have

θ2 = θ2 + θ1 = θ1 + θ2 = θ1.

This completes the proof.

By the above proposition, we can assert that there is exactly one
element θ ∈ V such that x+ θ = V for all x ∈ V .

Definition 1.2 (zero element) Let V be a vector space. The
unique element θ ∈ V such that x+ θ = x for all x ∈ V is called the
zero element or simply, the zero in V .
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Notation: The zero element in a vector space as well as the zero in
the scalar field are often denoted by the same symbol 0.

Exercise 1.1 Let V be a vector space. For x, y ∈ V , show that
x+ y = x implies y = θ. �

Proposition 1.2 Let V be a vector space. For x ∈ V , let x′ and x′′

be in V such that

x+ x′ = θ and x+ x′′ = θ.

Then x′ = x′′.

Proof. By hypothesis and using the axioms (a), (b), (c), it follows
that

x′ = x′ + θ = x′ + (x+ x′′) = (x′ + x) + x′′ = θ + x′′ = x′′.

This completes the proof.

The above proposition shows that, for every x ∈ V , there exists
only one element x̃ ∈ V such that x+ x̃ = θ.

Definition 1.3 (additive inverse) Let V be a vector space. For
each x ∈ V , the unique element x̃ ∈ V such that x+ x̃ = θ is called
the additive inverse of x.

Notation: For x in a vector space, the unique element x̃ which
satisfies x+ x̃ = θ is denoted by −x.

Proposition 1.3 Let V be a vector space. Then, for all x ∈ V ,

0x = θ and (−1)x = −x.

Proof. Let x ∈ V . Since 0x = (0 + 0)x = 0x+ 0x, it follows that
0x = θ. Thus, (i) is proved. Now, x+ (−1)x = [1 + (−1)]x = 0.x = θ
so that, by the uniqueness of the additive inverse of x, it follows that
(−1)x = −x.

Notation: For x, y in a vector space, the expression x + (−y) is
denoted by x− y.

We observe that a vector space V , by definition, cannot be an
empty set. It contains at least one element, viz., the zero element.
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If a vector space V contains at least one nonzero element, then it
contains infinitely many nonzero elements: If x is a nonzero element
in V , and if α, β are scalars such that α 6= β, then αx 6= βx (see
Exercise 1.2 below). This is a consequence of axiom (h).

Exercise 1.2 Show that, if x ∈ V and x 6= 0, then αx 6= βx for
every α, β ∈ F with α 6= β. �

Unless otherwise specified, we always assume that the vector
space under discussion is non-trivial , i.e., it contains at least one
nonzero element.

1.3 Examples of Vector Spaces

EXAMPLE 1.1 (Space Fn) Consider the set Fn of all n–tuples
of scalars, i.e.,

Fn := {x = (α1, . . . , αn) : αi ∈ F, i = 1, . . . , n}.

For x = (α1, . . . , αn), y = (β1, . . . , βn) in Fn, and α ∈ F, define the
addition and scalar multiplication coordinate-wise as

x+ y = (α1 + β1, . . . , αn + βn), αx = (αα1, . . . , ααn).

Then it can be seen that Fn is a vector space with zero element
θ := (0, . . . , 0) and additive inverse of x = (α1, . . . , αn) as −x =
(−α1, . . . ,−αn).

EXAMPLE 1.2 (Space Pn) For n ∈ {0, 1, 2, . . .}, let Pn be the
set of all polynomials of degree at most n, with coefficients in F, i.e.,
x ∈ Pn if and only if x is of the form

x = a0 + a1t+ . . .+ ant
n

for some scalars a0, a1 . . . , an. Then Pn is a vector space with addi-
tion and scalar multiplication defined as follows:

For x = a0 + a1t + . . . ant
n, y = b0 + b1t + . . . + bnt

n in Pn and
α ∈ F,

x+ y = (a0 + b0) + (a1 + b1)t+ . . .+ (an + bn)tn,

αx = αa0 + αa1t+ . . .+ αant
n.

The zero polynomial, i.e., the polynomial with all its coefficients zero,
is the zero element of the space, and

−x = −a0 − a1t− . . .− antn.
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EXAMPLE 1.3 (Space P) Let P be the set of all polynomials
with coefficients in F, i.e., x ∈ P if and only if x ∈ Pn for some
n ∈ {0, 1, 2, . . .}. For x, y ∈ P, let n,m be such that x ∈ Pn and
y ∈ Pm. Then we have x, y ∈ Pk, where k = max {n,m}. Hence we
can define x+ y and αx for α ∈ F as in Pk. With this addition and
scalar multiplication, it follows that P is a vector space.

EXAMPLE 1.4 (Space Fm×n) Let V = Fm×n be the set of all
m × n matrices with entries in F. If A is a matrix with its ij-th
entry aij , then we shall write A = [aij ]. It is seen that V is a vector
space with respect to the addition and scalar multiplication defined
as follows: For A = [aij ], B = [bij ] in V , and α ∈ F,

A+B := [aij + bij ], αA := [αaij ].

In this space, −A = [−aij ], and the matrix with all its entries are
zeroes is the zero element.

EXAMPLE 1.5 (Space Fk) This example is a special case of the
last one. For each k ∈ N, let Fk denotes the set of all column k-
vectors, i.e., the set of all k × 1 matrices. Obviously, Fk is a vector
space over F. This vector space is in one-one correspondence with
Fk. One such correspondence is given by T : Fk → Fk defined by

T ((x1, . . . , xk)) =


x1

x2

. . .
xk

 , (x1, . . . , xk) ∈ Fk.

EXAMPLE 1.6 (Sequence space) Let V be the set of all scalar
sequences. For (αn) and (βn) in V , and α ∈ F, we define

(αn) + (βn) = (αn + βn), α(αn) = (ααn).

With this addition and scalar multiplication, V is a vector space with
its zero element as the sequence of zeroes, and −(αn) = (−αn).

Exercise 1.3 Verify that the sets considered in Examples 1.1 – 1.6
are indeed vector spaces with respect to the operations defined there.
�

For the next example the reader may recall the definition of a
real valued continuous function: A function x : Ω → R, i.e., a real
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valued function function x defined on a subset Ω of R, is said to be
continuous at a point s0 ∈ Ω, if for every given ε > 0, it is possible
to find a δ > 0, which may depend on s0 as well as ε, such that

s ∈ Ω, |s− s0| < δ ⇒ |x(s)− x(s0)| < ε.

EXAMPLE 1.7 (Space C(Ω)) Let Ω be a subset of R and C(Ω)
be the set of all real valued continuous functions defined on Ω. For
x, y ∈ C(Ω) and α ∈ F, we define x+ y and αx point-wise, i.e.,

(x+ y)(t) = x(t) + y(t), (αx)(t) = αx(t), t ∈ Ω.

Then it can be shown that x + y, αx ∈ C(Ω), and C(Ω) is a vector
space over R with zero element as the zero function, and additive in-
verse of x ∈ C(Ω) as the function −x defined by (−x)(t) = −x(t), t ∈
Ω.

NOTATION. If Ω = [a, b], we shall denote the space C(Ω) by C[a, b].
In case we want to emphasis the scalar field is R, then we shall write
C([a, b],R) in place of C[a, b].

EXAMPLE 1.8 (Space R[a, b]) Let R[a, b] be the set of all real
valued Riemann integrable functions on [a, b]. From the theory of
Riemann integration, it follows that if x, y ∈ R[a, b] and α ∈ F, then
x + y and αx defined pointwise belongs to R[a, b]. It is seen that
(Verify) R[a, b] is a vector space over R.

EXAMPLE 1.9 (Function space F(Ω,F)) Let Ω be a nonempty
set and F(Ω,F) be the set of all functions from Ω into F. For x, y ∈
F(Ω,F) and α ∈ F, let x+ y and αx be defined point-wise, i.e.,

(x+ y)(s) = x(s) + y(s), (αx)(s) = αx(s), s ∈ Ω.

Let −x and θ be defined by

(−x)(s) = −x(s), θ(s) = 0, s ∈ S.

Then it is easy to see that F(Ω,F) is a vector space over F.

For showing that F(Ω,F) is a vector space, what one essentially
requires is the linear structure on F. Thus, in a similar fashion we
can show that if W is a vector space, then F(Ω,W ), the set of all
functions from Ω into W , is a vector space.
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Consider the following particular cases of the above example.
(a) Let Ω = {1, . . . , n}. Then it can be seen that the function

T : F(S,F)→ Fn defined by

T (x) = (x(1), . . . , x(n)), x ∈ X,

is bijective. We also see that for every x, y in F(S,F) and α ∈ F,

T (x+ y) = T (x) + T (y), T (αx) = αT (x).

Such a map is called a linear transformation or a linear operator.
Linear transformations will be considered in more detail in the next
chapter. Here we give only its definition.

Definition 1.4 Let V and W be vector spaces. Then a function
T : X →W is called a linear transformation or a linear operator
if

T (x+ y) = T (x) + T (y) and T (αx) = αT (x)

for every x, y ∈ V and α ∈ F.

A bijective linear transformation is sometimes called a linear
isomorphism. Thus, if there is a linear isomorphism T : V → W
between vector spaces V and W , then as far as their linear structures
are concerned, they are indistinguishable. Hence we may regard them
same, up to a linear isomorphism. Thus, if Ω = {1, . . . , n}, then the
vector spaces F(Ω,F) and Fn can be considered as same. With this
identification in mind, we shall denote the j-th entry of an element
x = (α1, . . . , αn) of Fn by x(j) for j = 1, . . . , n.

Similarly, if Ω is a set with n elements, say Ω = {s1, . . . , sn}, then
F(Ω,F) can be identified with Fn by the map

x 7→ (x(s1), . . . , x(sn)) , x ∈ F(Ω,F).

(b) Next suppose Ω = N, the set of all positive integers. Then
F(Ω,F) can be identified with the set of all scalar sequences. The
identification is given by

x 7→ (x(1), x(2), . . .) , x ∈ F(N,F).

With this identification, the n–th entry αn of a scalar sequence x =
(αn) is also denoted by x(n).
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Similarly, if Ω is a denumerable set, say S = {s1, s2, . . .}, then
F(S,F) can be identified with the set of all scalar sequences by the
map

x 7→ (x(s1), x(s2), . . .) , x ∈ F(Ω,F).

(c) Consider Ω = {1, . . . ,m} × {1, . . . , n}. Then the resulting
vector space F(Ω,F) is in one–one correspondence with the set Fm×n
of all m × n matrices with entries in F. The bijective map, in this
case, is

x 7→ [x(i, j)],

where [x(i, j)] is the m× n matrix whose ij–th entry is x(i, j).

Exercise 1.4 Show that the maps considered in (a), (b) and (c)
above are linear transformations. �

Exercise 1.5 Verify that the sets considered in Examples 1.7 – 1.9
are indeed vector spaces with respect to the operations defined there.

�

Exercise 1.6 Find a bijective linear transformation between Fn and
Pn−1. �

EXAMPLE 1.10 Let J be an interval and Pn(J) be the set of all
polynomials of degree at most n considered as functions on J . Thus,
x ∈ Pn(J) if and only x : J → F and there exist scalars a0, a1, . . . , an
such that

x(t) = a0 + a1t+ . . .+ ant
n, t ∈ J.

Then as in Example 1.2, Pn(J) is a vector space.

EXAMPLE 1.11 Let J be an interval and P(J) = ∪∞n=0Pn(J).
Then as in Example 1.3, P(J) is a vector space.

NOTATION : If J = [a, b], then we may write Pn(J) and P(J) as
Pn[a, b] and P[a, b] respectively.

EXAMPLE 1.12 (Product space) Let V1, . . . , Vn be vector spaces.
Then the cartesian product

V = V1 × · · · × Vn,

the set of all of ordered n-tuples (x1, . . . , xn) with xj ∈ Vj for j ∈
{1, . . . , n}, is a vector space with respect to the addition and scalar
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multiplication defined by

(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn),

α(x1, . . . , xn) := (αx1, . . . , αxn)

with zero element (0, . . . , 0) and additive inverse of x = (x1, . . . , xn)
defined by −x = (−x1, . . . ,−xn).

This vector space is called the product space of V1, . . . Vn.
As a particular example, the space Fn can be considered as the

product space V1 × · · · × Vn with Vj = F for j = 1, . . . , n.

Exercise 1.7 In each of the following, a set is given and some op-
erations are defined. Check whether V is a vector space with these
operations:

(i) Let V = {x = (x1, x2) ∈ R2 : x2 = 0} with addition and scalar
multiplication as in R2.

(ii) Let V = {x = (x1, x2) ∈ R2 : 2x1 + 3x2 = 0} with addition
and scalar multiplication as in R2.

(iii) Let V = {x = (x1, x2) ∈ R2 : x1 +x2 = 1} with addition and
scalar multiplication as for R2.

(iv) Let V = R2, F = R. For x = (x1, x2), y = (y1, y2), let
x+ y := (x1 + y1, x2 + y2) and for all α ∈ R,

αx :=

{
(0, 0) α = 0,
(αx1, x2/α), α 6= 0.

(v) Let V = C2, F = C. For x = (x1, x2), y = (y1, y2), let

x+ y := (x1 + 2y1, x2 + 3y2) and αx := (αx1, αx2) ∀α ∈ C.

(vi) Let V = R2, F = R. For x = (x1, x2), y = (y1, y2), let

x+ y := (x1 + y1, x2 + y2) and αx := (x1, 0) ∀α ∈ R.

1.4 Subspace and Span

1.4.1 Subspace

We have seen that

• Pn which is a subset of the vector space P is also a vector space,

• C[a, b] which is a subset of the vector space F([a, b],R) is also
a vector space,
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• V = {x = (x1, x2) ∈ R2 : x2 = 0}, which is a subset of R2 is
a vector space with respect to the addition and scalar multiplication
as in R2.

• V = {x = (x1, x2) ∈ R2 : 2x1 + 3x2 = 0} which is a sub-
set of R2 is a vector space with respect to the addition and scalar
multiplication as in R2.

These examples motivate the following definition.

Definition 1.5 (Subspace) Let V0 be a subset of a vector space
V . Then V0 is called a subspace of V if V0 is a vector space with
respect to the operations of addition and scalar multiplication as in
V .

Theorem 1.4 Let V be a vector space, and V0 be a subset of V .
Then V0 is a subspace of V if and only if for every pair of vectors
x, y in V0 and for every α ∈ F,

x+ y ∈ V0 and αx ∈ V0.

Proof. Clearly, if V0 is a subspace of V , then x + y ∈ V0 and
αx ∈ V0 for all x, y ∈ V0 and for all α ∈ F.

Conversely, suppose that x+ y ∈ V0 and αx ∈ V0 for all x, y ∈ V0

and for all α ∈ F. Then, for any x ∈ V0,

θ = 0x ∈ V0 and − x = (−1)x ∈ V0.

Thus, axioms (c) and (d) in the definition of a vector space are
satisfied for V0. All the remaining axioms are trivially satisfied as
elements of V0 are elements of V as well.

EXAMPLE 1.13 The space Pn is a subspace of Pm for n ≤ m.

EXAMPLE 1.14 The space C[a, b] is a subspace of R[a, b].

EXAMPLE 1.15 (Space Ck[a, b]) For k ∈ N, let Ck[a, b] be the
set of all F-valued functions defined on [a, b] such that for each j ∈
{1, . . . , k}, j-th derivative x(j) of x exists and x(j) ∈ C[a, b]. It can
be seen that Ck[a, b] is a subspace of C[a, b].

EXAMPLE 1.16 The space P[a, b] is a subspace of Ck[a, b] for
every k ≥ 1.
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Exercise 1.8 Let A be an m × n matrix of scalars. Show that the
set of all x ∈ Fn which satisfies Ax = 0 is a subspace of Fn.

EXAMPLE 1.17 Let V be the space of all scalar sequences and

`1(N) :=
{
x ∈ V :

∞∑
j=1

|x(j)| <∞
}
,

the set of all absolutely summable sequences. We show that `1(N) is
a subspace of F(N,F): For x, y ∈ `1(N) and α, β ∈ F, and n ∈ N, we
have

n∑
j=1

|αx(j) + βy(j)| ≤ |α|
n∑
j=1

|x(j)|+ |β|
n∑
j=1

|y(j)|

≤ |α|
∞∑
j=1

|x(j)|+ |β|
∞∑
j=1

|y(j)|.

By letting n → ∞, we have
∑∞

j=1 |αx(j) + βy(j)| < ∞ so that

αx+ βy ∈ `1(N).

EXAMPLE 1.18 For a nonempty set Ω, let

`∞(Ω) :=
{
x ∈ F(S,F) : sup

s∈S
|x(s)| <∞

}
.

Note that `∞(Ω) is the set of all bounded functions on S. Thus,
x ∈ `∞(Ω) if and only there exists Mx > 0 such that |x(s)| ≤Mx for
all s ∈ S. We show that `∞(Ω) is a subspace of F(S,F): To see this,
let x, y ∈ B`∞(Ω) and α, β ∈ F. Suppose Mx > 0, My > 0 such that
|x(s)| ≤Mx and |y(s)| ≤My for all s ∈ S. Then,

|αx(s) + βy(s)| ≤ |α|Mx + |β|My ∀ s ∈ S.

Thus, sups∈S |αx(s) + βy(s)| <∞, and hence αx+ βy ∈ `∞.

In this example, if S is a finite set, then `∞(Ω) = F(S,F). But,
if S is an infinite set, then `∞(Ω) is a proper subspace of F(S,F).
To see this, let {s1, s2, . . .} be a denumerable subset of S, and let
x ∈ F(S,F) be defined by x(sj) = j for all j ∈ N. Then we see that
x does not belong to `∞(Ω).
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EXAMPLE 1.19 Let V be the space of all scalar sequences, and

c00 := {(α1, α2, . . .) ∈ V : ∃ k ∈ N such thatαj = 0 ∀ j ≥ k}.

Then it is seen that c00 is a subspace of V .

EXAMPLE 1.20 The set c00 introduced in Example 1.19 is a sub-
space of `1(N), and the sets

c0 := {x ∈ F(N,F) : x(n)→ 0 as n→∞},
c := {x ∈ F(N,F) : (x(n)) converges }

are subspaces of `∞(N). We observe that

c00 ⊆ `1(N) ⊆ c0 ⊆ c ⊆ `∞(N).

The above inclusions are, in fact, proper. To see this, let x, y, u, v in
F(N,F) be defined

x(j) = (−1)j , y(j) =
j

j + 1
, u(j) =

1

j
, v(j) =

1

j2
,

for j ∈ N. Then we see that

x ∈ `∞(N) \ c, y ∈ c \ c0,

u ∈ c0 \ `1(N), v ∈ `1(N) \ c00.

Exercise 1.9 Suppose V0 is a subspace of a vector space V , and V1

is a subspace of V0. Then show that V1 is a subspace of V . �

Exercise 1.10 Show that

V0 = {(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0, x1 + 2x2 + 3x3 = 0}

is a subspace of R3. Observe that V0 is the intersection of

V1 = {(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0}

and

V2 = {(x1, x2, x3) ∈ R3 : x1 + 2x2 + 3x3 = 0}.

�
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Theorem 1.5 Suppose V1 and V2 are subspaces of a vector space.
Then V1 ∩ V2 is a subspace of V .

Proof. Suppose x, y ∈ V1 ∩ V2 and α ∈ F. Then x, y ∈ V1 and
x, y ∈ V2. Since V1 and V2 are subspaces, it follows that αx, x+y ∈ V1

and αx, x + y ∈ V2 so that αx, x + y ∈ V1 ∩ V2. Thus, by Theorem
1.4, V1 ∩ V2 is a subspace.

Is union of two subspaces a subspace? Not necessarily:To see this
consider the subspaces

V1 := {x = (x1, x2) : x2 = x1}, V2 := {x = (x1, x2) : x2 = 2x1}

of the space R2. Note that x = (1, 1) ∈ V1 and y = (1, 2) ∈ V2, but
x+ y = (2, 3) 6∈ V1 ∪ V2. Hence V1 ∪ V2 is not a subspace of R2.

Theorem 1.6 Let V1 and V2 be subspaces of a vector space. Then
V1 ∪ V2 is a subspace if and only if either V1 ⊆ V2 or V2 ⊆ V1.

Proof. Suppose either V1 ⊆ V2 or V2 ⊆ V1. Then either V1∪V2 =
V2 or V1∪V2 = V1; in both the cases V1∪V2 is a subspace. Conversely,
suppose V1 ∪ V2 is a subspace. Assume for a moment that V1 6⊆ V2

and V2 6⊆ V1. Then, there exists x, y ∈ V such that x ∈ V1 \ V2

and y ∈ V2 \ V1. Now, x, y ∈ V1 ∪ V2. Since V1 ∪ V2 is a subspace,
x + y ∈ V1 ∪ V2. This implies that either x + y ∈ V1 or x + y ∈ V2,
which in turn implies y ∈ V1 or x ∈ V2. This is a contradiction.
Hence V1 6⊆ V2 and V2 6⊆ V1 is not possible. Hence, V1 ⊆ V2 or
V2 ⊆ V1.

Exercise 1.11 Suppose Λ is a set, and for each λ ∈ Λ let Vλ be a
subspace of a vector space V . Then ∩λ∈ΛVλ is a subspace of V . �

Exercise 1.12 In each of the following vector space V, see if the
subset V0 is a subspace of V :

(i) V = R2 and V0 = {(x1, x2) : x2 = 2x1 − 1}.
(ii) V = R3 and V0 = {(x1, x2, x3) : 2x1 − x2 − x3 = 0}.
(iii) V = C[−1, 1] and V0 = {f ∈ V : f is an odd function}.
(iv) V = C[0, 1] and V0 = {f ∈ V : f(t) ≥ 0 ∀t ∈ [0, 1]}.
(v) V = P3 and V0 = {a0 + a1t+ a2t

2 + a3t
3 : a0 = 0}.

(vi) V = P3 and V0 = {a0 + a1t+ a2t
2 + a3t

3 : a2 = 0}.

Exercise 1.13 Prove that the only proper subspaces of R2 are the
straight lines passing through the origin.
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Exercise 1.14 Let V be a vector space and u1, . . . , un are in V .
Show that

V0 := {α1u1 + . . .+ αnun : αi ∈ F, i = 1, . . . , n}

is a subspace of V . �

1.4.2 Linear Combination and Span

Definition 1.6 (Linear combination) Let V be a vector space
and u1, . . . , un are in V . Then, by a linear combination of u1, . . . , un,
we mean an element in V of the form α1u1 + · · ·+αnun with αj ∈ F,
j = 1, . . . , n.

Definition 1.7 (Span) Let S be a subset of V . Then the set of all
linear combinations of elements of S is called the span of S, and is
denoted by spanS.

Thus, for S ⊆ V , x ∈ spanS if and only if there exists x1, . . . , xn
in S and scalars α1, . . . , αn such that x = α1x1 + · · ·+ αnxn.

As a convention, span of the empty set is taken to be the singleton
set {0}.

Remember! By a linear combination, we always mean a linear
combination of a finite number of elements in the space. An expres-
sion of the form α1x1 +αnxn+ · · · with x1, x2, . . . in V and α1, α2, . . .
in F has no meaning in a vector space, unless there is some additional
structure which allows such expression.

Theorem 1.7 Let V be a vector space, and S ⊆ V . Then spanS is
a subspace of V , and spanS is the smallest subspace containing S.

Proof. The fact that spanS is a subspace of V is left as an exercise
(Hint: Use Theorem 1.4). It remains to show that spanS is the
smallest subspace containing S. For this, consider a subspace V0

of V such that S ⊂ V0. Then, as V0 is a subspace, every linear
combination of members of S has to be in V0, that is, spanS ⊂ V0.
This completes the proof.

Exercise 1.15 Let S be a subset of a vector space V . Show that S
is a subspace if and only if S = spanS.

Exercise 1.16 Let V be a vector space. Show that the the following
hold.
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(i) Let S be a subset of V . Then

spanS =
⋂
{Y : Y is a subspace of V containing S}.

(ii) Suppose V0 is a subspace of V and x0 ∈ V \ V0. Then for
every x ∈ span {x0;V0} := span ({x0} ∪ V0), there exist a unique
α ∈ F, y ∈ V0 such that x = αx0 + y. �

1.4.3 Examples

EXAMPLE 1.21 Let V = Fn and for each j ∈ {1, . . . , n}, let
ej ∈ Fn be the element with its j-th coordinate 1 and all other
coordinates 0’s. Then Fn is the span of {e1, . . . , en}.

EXAMPLE 1.22 For 1 ≤ k < n, let

V0 := {(α1, . . . , αn) ∈ Rn : αj = 0, j = k + 1, . . . , n}.

Then it is seen that V0 is the span of {e1, . . . , ek}, where ej(i) = δij
with j = 1, . . . , k; i = 1, . . . , n.

EXAMPLE 1.23 Let V = P, and uj(t) = tj−1 for t ∈ [a, b], j ∈ N.
Then Pn is the span of {u1, . . . , un+1}, and P = span {u1, u2, . . .}.

NOTATION: For (i, j) ∈ N× N, let

δij =

{
1 if i = j

0 if i 6= j.

Thus, in the above example, the i-th coordinate of ej is δij for i, j =
1, . . . , n, i.e.,

ei = (δi1, δi2, . . . , δin), i ∈ {1, . . . , n}.

EXAMPLE 1.24 The space c00 is the span of {e1, e2, . . .}, where
ej(i) = δij with i, j ∈ N.

Exercise 1.17 Let uj(t) = tj−1, j ∈ N. Show that span of {u1, . . . , un+1}
is Pn, and span of {u1, u2, . . .} is P. �

Exercise 1.18 Let u1(t) = 1, and for j = 2, 3, . . . , let uj(t) =
1 + t + . . . + tj . Show that span of {u1, . . . , un} is Pn, and span of
{u1, u2, . . .} is P. �
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1.4.4 Sums of Subsets and Subspaces

Definition 1.8 (Sum of subsets) Let V be a vector space, x ∈ V ,
and E,E1, E2 be subsets of V . Then we define the following:

x+ E := {x+ u : u ∈ E},

E1 + E2 := {x1 + x2 : x1 ∈ E1, x2 ∈ E2}.

The set E1 + E2 is called the sum of the subsets E1 and E2.

Theorem 1.8 Suppose V1 and V2 are subspaces of V . Then V1 +V2

is a subspace of V . In fact,

V1 + V2 = span (V1 ∪ V2).

Proof. Let x, y ∈ V1+V2 and α ∈ F. Then, there exists x1, y1 ∈ V1

and x2, y2 ∈ V2 such that x = x1 + y1, y = y1 + y2. Hence,

x+ y = (x1 + y1) + (y1 + y2) = (x1 + y1) + (x2 + y2) ∈ V1 + V2,

α(x+ y) = α(x1 + y1) = (αx1 + αy1) ∈ V1 + V2.

Thus, V1 + V2 is a subspace of V .

Now, since V1 ∪ V2 ⊆ V1 + V2, and since V1 + V2 is a subspace,
we have span (V1 ∪ V2) ⊆ V1 + V2. Also, since V1 ⊆ span (V1 ∪ V2),
V2 ⊆ span (V1 ∪ V2), and since span (V1 ∪ V2) is a subspace, we have
V1 + V2 ⊆ span (V1 ∪ V2). Thus,

V1 + V2 ⊆ span (V1 ∪ V2) ⊆ V1 + V2,

which proves the last part of the theorem.

Exercise 1.19 Suppose V1 and V2 are subspaces of a vector space V
such that V1∩V2 = {0}. Show that every x ∈ V1 +V2 can be written
uniquely as x = x1 + x2 with x1 ∈ V1 and x2 ∈ V2. �

Definition 1.9 If V1 and V2 are subspaces of a vector space V such
that V1 ∩ V2 = {0}, then we write V1 + V2 as V1 ⊕ V2, and call it as
direct sum of V1 and V2. ♦

Exercise 1.20 Suppose V1 and V2 are subspaces of a vector space
V . Show that V1 + V2 = V1 if and only if V2 ⊆ V1. �
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1.5 Basis and Dimension

Definition 1.10 (Linear dependence) Let V be a vector space.
A subset E of V is said to be linearly dependent if there exists u ∈ E
such that u ∈ span (E \ {u}).

Definition 1.11 (Linear independence) Let V be a vector space.
A subset E of V is said to be linearly independent in V if it is not
linearly dependent.

Thus, if E is a subset of V , then

• E is linearly dependent if and only if there exists {u1, . . . , un} ⊆
E and scalars α1, . . . , αn, with at least one of them nonzero, such that
α1u1 + · · ·+ αnxn = 0, and

• E is linearly independent if and only if for every finite subset
{u1, . . . , un} of E, α1u1 + · · ·+ αnxn = 0 ⇒ αi = 0 ∀ i = 1, . . . , n.

If {u1, . . . , un} is a linearly independent (respectively, dependent)
subset of a vector space V , then we may also say that u1, . . . , un are
linearly independent (respectively, dependent) in V .

Note that a linearly dependent set cannot be empty. In other
words, the empty set is linearly independent!

Caution! If u1, . . . , un are such that at least one of them is not in the
span of the remaining, then we cannot conclude that u1, . . . , un are
linearly independent. For the linear independence of {u1, . . . , un}, it
is required that ui 6∈ span {uj : j 6= i} for every i ∈ {1, . . . , n}.

Also, if {u1, . . . , un} are linearly dependent, then it does not imply
that any one of them is in the span of the rest.

To illustrate the above points, consider two linearly independent
vectors u1, u2. Then we have u1 6∈ span {u2, 3u2}, but {u1, u2, 3u2}
is linearly dependent, and {u1, u2, 3u2} is linearly dependent, but
u1 6∈ span {u2, 3u2}.

Exercise 1.21 Let V be a vector space.

(i) Show that a subset {u1, . . . , un} of V is linearly dependent
if and only if there exists a nonzero (α1, . . . , αn) in Fn such that
α1u1 + · · ·+ αnun = 0.

(ii) Show that a subset {u1, . . . , un} of V is linearly independent
if and only if the function (α1, . . . , αn) 7→ α1u1 + · · ·+αnun from Fn
into V is injective.
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(iii) Show that if E ⊆ V is linearly independent in V , then 0 6∈ E.

(iv) Show that if E ⊆ V is linearly dependent in V , then every
superset of E is also linearly dependent.

(v) Show that if E ⊆ V is linearly independent in V , then every
subset of E is also linearly independent.

(vi) Show that if {u1, . . . , un} is a linearly independent subset
of V , and if Y is a subspace of V such that {u1, . . . , un} ∩ Y = ∅,
then every x in the span of {u1, . . . , un, Y } can be written uniquely
as x = α1u1 + · · ·+ αnun + y with (α1, . . . , αn) ∈ Fn, y ∈ Y .

(vii) Show that if E1 and E2 are linearly independent subsets
of V such that (spanE1 ∩ (spanE2) = {0}, then E1 ∪ E2 is linearly
independent. �

Exercise 1.22 For each k ∈ N, let Fk denotes the set of all column
k-vectors, i.e., the set of all k×1 matrices. Let A be an m×n matrix
of scalars with columns a1, a2, . . . , an. Show the following:

(i) The equation Ax = 0 has a non-zero solution if and only if
a1, a2, . . . , an are linearly dependent.

(ii) For y ∈ Fm, the equation Ax = y has a solution if and only if
a1, a2, . . . , an, y are linearly dependent, i.e., if and only if y is in the
span of columns of A. �

Definition 1.12 (Basis) A subset E of a vector space V is said to
be a basis of V if it is linearly independent and spanE = V .

EXAMPLE 1.25 For each j ∈ {1, . . . , n}, let ej ∈ Fn be such that
ej(i) = δij , i, j = 1, . . . , n. Then we have seen that {e1, . . . , en} is
linearly independent and its span is Fn. Hence {e1, . . . , en} is a basis
of Fn.

EXAMPLE 1.26 For each j ∈ {1, . . . , n}, let ej ∈ Fn be such that
ej(i) = δij , i, j = 1, . . . , n. Then it is easily seen that {e1, . . . , en} is
linearly independent and its span is Fn. Hence {e1, . . . , en} is a basis
of Fn.

Definition 1.13 (Standard bases of Fn and Fn) The basis {e1, . . . , en}
of Fn is called the standard basis of Fn, and the basis {e1, . . . , en} of
Fn is called the standard basis of Fn.
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EXAMPLE 1.27 Let uj(t) = tj−1, j ∈ N. Then {u1, . . . , un+1} is
a basis of Pn, and {u1, u2, . . .} is a basis of P.

Exercise 1.23 Let u1(t) = 1, and for j = 2, 3, . . . , let uj(t) =
1 + t + . . . + tj−1. Show that {u1, . . . , un+1} is a basis of Pn, and
{u1, u2, . . .} is a basis of P. �

EXAMPLE 1.28 For i = 1, . . . ,m; j = 1, . . . , n, let Mij be the
m × n matrix with its (i, j)-th entry as 1 and all other entries 0.
Then

{Mij : i = 1 . . . ,m; j = 1, . . . , n}

is a basis of Fm×n.

EXAMPLE 1.29 For λ ∈ [a, b], let uλ(t) = exp (λt), t ∈ [a, b].
Then it is seen that {uλ : α ∈ [a, b]} is an uncountable linearly
independent subset of C[a, b].

Clearly, a linearly independent subset of a subspace remains lin-
early independent in the whole space. Thus, the set {u1, u2, . . .} in
Example 1.27(ii) is linearly independent in C[a, b] and F([a, b],F).

Exercise 1.24 If {u1, . . . , un} is a basis of a vector space V , then
show that every x ∈ V , can be expressed uniquely as x = α1u1+· · ·+
αnun; i.e., for every x ∈ V , there exists a unique n-tuple (α1, . . . , αn)
of scalars such that x = α1u1 + · · ·+ αnun. �

Exercise 1.25 Consider the system of equations

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2
. . . + . . . + . . . + . . . = . . .

am1x1 + am1x2 + . . . + amnxn = bm

Show that the above system has at most one solution if and only if
the vectors

w1 :=


a11

a21

. . .
am1

 , w2 :=


a12

a22

. . .
am2

 , . . . , wn :=


a1n

a2n

. . .
amn


are linearly independent. �
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Exercise 1.26 Let u1, . . . , un are linearly independent vectors in a
vector space V . Let [aij ] be an m× n matrix of scalar, and let

v1 := a11u1 + a21u2 + . . . + am1un
v2 := a12u1 + a22u2 + . . . + am2un
. . . . . . + . . . + . . . + . . .
vn := a1nu1 + a2nu2 + . . . + amnun.

Show that the v1, . . . , vm are linearly independent if and only if the
vectors

w1 :=


a11

a21

. . .
am1

 , w2 :=


a12

a22

. . .
am2

 , . . . , wn :=


a1n

am2

. . .
amn


are linearly independent. �

Exercise 1.27 Let p1(t) = 1 + t + 3t2, p2(t) = 2 + 4t + t2, p3(t) =
2t+ 5t2. Are the polynomials p1, p2, p3 linearly independent? �

Theorem 1.9 Let V be a vector space and E ⊆ V . Then the fol-
lowing are equivalent.

(i) E is a basis of V
(ii) E is a maximal linearly independent set in V , i.e., E is

linearly independent, and a proper superset of E cannot be linearly
independent.

(iii) E is a minimal spanning set of V , i.e., span of E is V , and
a proper subset of E cannot span V .

Proof. (i) ⇐⇒ (ii): Suppose E is a basis of V . Suppose E′ is a
proper superset of E. Let x ∈ E′\E. Since E is a basis, x ∈ span (E).
This shows that E′ is linearly dependent (as E ∪ {x} ⊆ E′).

Conversely, suppose E is a maximal linearly independent set. If
E is not a basis, then there exists x 6∈ span (E). Then, E ∪ {x} is a
linearly independent which is a proper superset of E – a contradiction
to the maximality of E.

(i)⇐⇒ (iii): Suppose E is a basis of V . Suppose E′ is a proper
subset of E. Then, it is clear that there exists x ∈ E \ E′ which is
not in the span of E′ (since E′ ∪ {x} ⊆ E). Hence, E′ does not span
V .

Conversely, suppose E is a minimal spanning set of V . If E is
not a basis, then E is linearly dependent, and hence there exists
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x ∈ span (E \ {x}). Since E spans V , it follows that E \ {x}, which
is a proper subset of E, also spans V – a contradiction to the fact
that E is a minimal spanning set of V .

Exercise 1.28 Suppose V1 and V2 are subspaces of a finite dimen-
sional vector space V such that V1 ∩ V2 = {0}. If E1 and E2 are
bases of V1 and V2, respectively, then prove that E1 ∪ E2 is a basis
of V1 + V2.

1.5.1 Dimension of a Vector Space

Definition 1.14 (Finite dimensional space) A vector space V
is said to be a finite dimensional space if there is a finite basis for V .

Recall the empty set is considered as a linearly independent set,
and its span is the zero space.

Definition 1.15 (Infinite dimensional space) A vector space
which is not a finite dimensional space is called an infinite dimen-
sional space.

Theorem 1.10 If a vector space has a finite spanning set, then it
has a finite basis. In fact, if S is a finite spanning set of V , then
there exists a basis E ⊆ S.

Proof. Let V be a vector space and S be a finite subset of V such
that spanS = V . If S itself is linearly independent, then we are
through. Suppose S is not linearly independent. Then there exists
u1 ∈ S such that u1 ∈ span (S \ {u1}). Let S1 = S \ {u1}. Clearly,

spanS1 = spanS = V.

If S1 is linearly independent, then we are through. Otherwise, there
exists u2 ∈ S1 such that u2 ∈ span (S1 \{u2}). Let S2 = S \{u1, u2}.
Then, we have

spanS2 = spanS1 = V.

If S2 is linearly independent, then we are through. Otherwise, con-
tinue the above procedure. This procedure will stop after a
finite number of steps, as the original set S is a finite set, and we
end up with a subset Sk of S which is linearly independent and
spanSk = V .
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By definition, an infinite dimensional space cannot have a finite
basis. Is it possible for a finite dimensional space to have an infinite
basis, or an infinite linearly independent subset? The answer is, as
expected, negative. In fact, we have the following result.

Theorem 1.11 Let V be a finite dimensional vector space with a
basis consisting of n elements. Then every subset of V with more
than n elements is linearly dependent.

Proof. Let {u1, . . . , un} be a basis of V , and {x1, . . . , xn+1} ⊂ V .
We show that {x1, . . . , xn+1} is linearly dependent.

If {x1, . . . , xn} is linearly dependent, then {x1, . . . , xn+1} is lin-
early dependent. So, let us assume that {x1, . . . , xn} is linearly in-
dependent. Now, since {u1, . . . un} is a basis of V , there exist scalars
α1, . . . , αn such that

x1 = α1u1 + · · ·+ αnun.

Since x1 6= 0, one of α1, . . . , αn is nonzero. Without loss of generality,
assume that α1 6= 0. Then we have u1 ∈ span {x1, u2, . . . , un} so that

V = span {u1, u2, . . . , un} = span {x1, u2, . . . , un}.

Let α
(2)
1 , . . . , α

(2)
n be scalars such that

x2 = α
(2)
1 x1 + α

(2)
2 u2 + · · ·+ α(2)

n un.

Since {x1, x2} is linearly independent, at least one of α
(2)
2 , . . . , α

(2)
n is

nonzero. Without loss of generality, assume that α
(2)
2 6= 0. Then we

have u2 ∈ span {x1, x2, u3, . . . , un} so that

V = span {x1, u2, . . . , un} = span {x1, x2, u3, . . . , un}.

Now, let 1 ≤ k ≤ n− 1 be such that

V = span {x1, x2, . . . , xk, uk+1, . . . , un}.

Suppose k < n− 1. Then there exist scalars α
(k+1)
1 , . . . , α

(k+1)
n such

that

xk+1 = α
(k+1)
1 x1 + · · ·+ α

(k+1)
k xk + α

(k+1)
k+1 uk+1 + · · ·+ α(k+1)

n un.

Since {x1, . . . , xk+1} is linearly independent, at least one of the scalars

α
(k+1)
k+1 , . . . , α

(k+1)
n is nonzero. Without loss of generality, assume that



Basis and Dimension 23

α
(k+1)
k+1 6= 0. Then we have uk+1 ∈ span {x1, . . . , xk+1, uk+2, . . . , un}

so that

V = span {x1, . . . , xk, uk+1, . . . , un}
= span {x1, . . . , xk+1, uk+2, . . . , un}.

Thus, the above procedure leads to V = span {x1, . . . , xn−1, un} so

that there exist scalars α
(n)
1 , . . . , α

(n)
n such that

xn = α
(n)
1 x1 + · · ·+ α

(n)
n−1xn−1 + α(n)

n un.

Since {x1, . . . , xn} is linearly independent, it follows that α
(n)
n 6= 0.

Hence,
un ∈ span {x1, . . . , xn}.

Consequently,

V = span {x1, x2, . . . , xn−1, un} = span {x1, x2, . . . , xn−1, xn}.

Thus, xn+1 ∈ span {x1, . . . , xn}, showing that {x1, . . . , xn+1} is lin-
early dependent.

The following three corollaries are easy consequences of Theorem
1.11. Their proofs are left as exercises for the reader.

Corollary 1.12 If V is a finite dimensional vector space, then any
two bases of V have the same number of elements.

Corollary 1.13 If a vector space contains an infinite linearly inde-
pendent subset, then it is an infinite dimensional space.

Corollary 1.14 If (aij) is an m×n matrix with aij ∈ F and n > m,
then there exists a nonzero (α1, . . . , αn) ∈ Fn such that

ai1α1 + ai2α2 + · · ·+ ainαn = 0, i = 1, . . . ,m.

Exercise 1.29 Assuming Corollary 1.14, give an alternate proof for
Theorem 1.11. �

By Corollary 1.14, we see that if A is an m×n matrix with entries
from F and n > m, then there exists an n× 1 nonzero matrix x such
that

Ax = 0,

where 0 is the m× 1 zero matrix.
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Definition 1.16 (n-vector) An n × 1 matrix is also called an n-
vector.

In view of Corollary 1.12, the following definition makes sense.

Definition 1.17 (Dimension) Suppose V is a finite dimensional
vector space. Then the dimension of V is the number of elements in
a basis of V , and this number is denoted by dim (V ). If V is infinite
dimensional, then its dimension is defined to be infinity and we write
dim (V ) =∞.

EXAMPLE 1.30 The spaces Fn and Pn−1 are of dimension n.

EXAMPLE 1.31 It is seen that the set {e1, e2, . . . , } ⊆ F(N,F)
with ej(i) = δij is a linearly independent subset of the spaces `1(N)
and `∞(N). Hence, it follows that `1(N) and `∞(N) are infinite di-
mensional spaces.

EXAMPLE 1.32 We see that {u1, u2, . . . , } with uj(t) = tj−1, j ∈
N, is linearly independent in Ck[a, b] for every k ∈ N. Hence, the
space Ck[a, b] for each k ∈ N is infinite dimensional.

EXAMPLE 1.33 Suppose S is a finite set consisting of n elements.
Then F(S,F) is of dimension n. To see this, let S = {s1, . . . , sn},
and for each j ∈ {1, . . . , n}, define fj ∈ F(S,F) by

fj(si) = δij , i ∈ {1, . . . , n}.

Then the set {f1, . . . , fn} is a basis of F(S,F): Clearly,

n∑
j=1

αjfj = 0 ⇒ αi =

n∑
j=1

αjfj(si) = 0 ∀ i.

Thus, {f1, . . . , fn} is linearly independent. To see that it spans the
space, it is enough to note that f =

∑n
j=1 f(sj)fj for all f ∈ F(S,F).

Exercise 1.30 Suppose V1 and V2 are finite dimensional vector
spaces. Show that V1 × V2 is a finite dimensional vector space and

dim (V1 × V2) = dim (V1) + dim (V2).

(Hint: If {u1, . . . , um} and {v1, . . . , vn} are bases of V1 and V2, re-
spectively, then {(ui, 0) : i = 1, . . . ,m} ∪ {(0, vj) : j = 1, . . . , n} is a
basis of V1 × V2.)
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Exercise 1.31 Let V1 and V2 be subspaces of a finite dimensional
vector space V such that V1∩V2 = {0}. Show that V1×V2 is linearly
isomorphic with V1 ⊕ V2.

Remark 1.1 We have seen that if there is a finite spanning set S for
a vector space V , then there is a basis E ⊆ S. Also, we know that a
linearly independent set E is a basis if and only if it is maximal, in the
sense that, there is no linearly independent set properly containing
E. The existence of such a maximal linearly independent set can be
established using an axiom in set theory known as Zorn’s lemma. It
is called lemma, as it known to be equivalent to an axiom, called
Axiom of choice.

1.5.2 Dimension of Sum of Subspaces

Theorem 1.15 Suppose V1 and V2 are subspaces of a finite dimen-
sional vector space V . If V1 ∩ V2 = {0}, then

dim (V1 + V2) = dimV1 + dimV2.

Proof. Suppose {u1, . . . , uk} is a basis of V1 and {v1, . . . , v`} is
a basis of V2. We show that E := {u1, . . . , uk, v1, . . . , v`} is a ba-
sis of V1 + V2. Clearly (Is it clear?) spanE = V1 + V2. So, it is
enough to show that E is linearly independent. For this, suppose
α1, . . . , αk, β1, . . . , β` are scalars such that α1u1 + . . .+αkuk+β1v1 +
. . .+ β`v` = 0. Then we have

x := α1u1 + . . .+ αkuk = −(β1v1 + . . .+ β`v`) ∈ V1 ∩ V2 = {0}

so that α1u1 + . . .+αkuk = 0 and β1v1 + . . .+β`v` = 0. From this, by
the linearly independence of ui’s and vj ’s, it follows that αi = 0 for
i ∈ {1, . . . , k} and βj = 0 for all j ∈ {1, . . . , `}. Hence, E is linearly
independent. This completes the proof.

In fact, the above theorem is a particular case of the following.

Theorem 1.16 Suppose V1 and V2 are subspaces of a finite dimen-
sional vector space V . Then

dim (V1 + V2) = dimV1 + dimV2 − dim (V1 ∩ V2).

For the proof of the above theorem we shall make use of the
following result.
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Proposition 1.17 Let V be a finite dimensional vector space. If E0

is a linearly independent subset of V , then there exists a basis E of
V such that E0 ⊆ E.

Proof. Let E0 = {u1, . . . , uk} be a linearly independent subset of
V , and let {v1, . . . , vn} be a basis of V . Let

E1 =

{
E0 if v1 ∈ span (E0),

E0 ∪ {v1} if v1 6∈ span (E0).

Clearly, E1 is linearly independent, and

E0 ⊆ E1, {v1} ⊆ span (E1).

Then define

E2 =

{
E1 if v2 ∈ span (E1),

E1 ∪ {v2} if v2 6∈ span (E1).

Again, it is clear that E2 is linearly independent, and

E1 ⊆ E2, {v1, v2} ⊆ span (E2).

Having defined E1, . . . , Ej , j < n, we define

Ej+1 =

{
Ej if vj+1 ∈ span (Ej),

Ej ∪ {vj+1} if vj+1 6∈ span (Ej).

Thus, we get linearly independent sets E1, E2, . . . , En such that

E0 ⊆ E1 ⊆ . . . En, {v1, v2, . . . , vn} ⊆ span (En).

Since {v1, . . . , vn} is a basis of V , it follows that E := En is a basis
of V such that E0 ⊆ En = E.

Proof of Theorem 1.16. Let {u1, . . . , uk} be a basis of the sub-
space V1 ∩ V2. By Proposition 1.17, there exists v1, . . . , v` in V1

and w1, . . . , wm in V2 such that {u1, . . . , uk, v1, . . . , v`} is a basis
of V1, and {u1, . . . , uk, w1, . . . , wm} is a basis of V2. We show that
E := {u1, . . . , uk, v1, . . . , v`, w1, . . . , wm} is a basis of V1 + V2.
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Clearly, V1 + V2 = span (E). Hence, it is enough to show that E
is linearly independent. For this, let α1, . . . , αk, β1, . . . , β`, γ1, . . . , γm
be scalars such that

k∑
i=1

αiui +
∑̀
i=1

βivi +

m∑
i=1

γiwi = 0. (∗)

Then

x :=

k∑
i=1

αiui +
∑̀
i=1

βivi = −
m∑
i=1

γiwi ∈ V1 ∩ V2.

Hence, there exists scalars δ1, . . . , δk such that

k∑
i=1

αiui +
∑̀
i=1

βivi =

k∑
i=1

δiui, i.e.,

k∑
i=1

(αi − δi)ui +
∑̀
i=1

βivi = 0

Since {u1, . . . , uk, v1, . . . , v`} is a basis of V1, it follows that αi = δi
for all i = 1, . . . , k, and βj = 0 for j = 1, . . . , `. Hence, from (∗),

k∑
i=1

αiui +
m∑
i=1

γiwi = 0.

Now, since {u1, . . . , uk, w1, . . . , wm} is a basis of V2, it follows that
αi = 0 for all i = 1, . . . , k, and γj = 0 for all j = 1, . . . ,m.

Thus, we have shown that {u1, . . . , uk, v1, . . . , v`, w1, . . . , wm} is
a basis of V1 + V2. Since dim (V1 + V2) = k + `+m, dimV1 = k + `,
dimV2 = k +m and dim (V1 ∩ V2) = k, we get

dim (V1 + V2) = dimV1 + dimV2 − dim (V1 ∩ V2).

This completes the proof.

1.6 Quotient Space

Let V be a vector space and V0 be a subspace of V . For x ∈ V0, let

x+ V0 := {x+ u : u ∈ V0}.

We note that (verify!), for x, y ∈ V ,

x+ V0 = y + V0 ⇐⇒ x− y ∈ V0,
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so that we have
x+ V0 = V0 ⇐⇒ x ∈ V0.

Let us denote
V/V0 := {x+ V0 : x ∈ V }.

Theorem 1.18 On the set V/V0, consider the the operation of ad-
dition and scalar multiplication as follows: For x, y ∈ V and α ∈ F,

(x+ V0) + (y + V0) := (x+ y) + V0,

α(x+ V0) := αx+ V0.

With these operations, V/V0 is a vector space with its zero as V0 and
additive inverse of x+ V0 as (−x) + V0.

Definition 1.18 The vector space V/V0 is called the quotient
space of V with respect to V0. ♦

EXAMPLE 1.34 Let V = R2 over F = R and V0 be the straight
line given by V0 := {(x, y) : ax+ by = 0} for some a, b ∈ R. Then for
every v ∈ R2, v + V is the line passing through v and parallel to V0.

EXAMPLE 1.35 Let V = R3 over F = R and V0 be the plane
given by V0 := {(x, y, z) : ax + by + cz = 0} for some a, b, c ∈ R.
Then for every v ∈ R2, v + V is the plane passing through v and
parallel to V0.

Theorem 1.19 Let V is a finite dimensional vector space and V0 is
a subspace of V . If V1 is a subspace of V such that V = V0 ⊕ V1,
then V1 is linearly isomorphic with V/V0.

As a corollary to the above theorem we have the following.

Theorem 1.20 Let V is a finite dimensional vector space and V0 is
a subspace of V . Then dim (V/V0) is a finite dimensional space and

dim (V ) = dim (V0) + dim (V/V0).
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Linear Transformations

2.1 Motivation

We may recall from the theory of matrices that if A is an m × n
matrix, and if ~x is an n-vector, then A~x is an m-vector. Moreover,
for any two n-vectors ~x and ~y, and for every scalar α,

A(~x+ ~y) = A~x+A~y, A(α~x) = αA~x).

Also, we recall from calculus, if f and g are real-valued differentiable
functions (defined on an interval J), and α is a scalar, then

d

dt
(f + g) =

d

dt
f +

d

dt
g,

d

dt
(αf) = α

d

dt
f.

Note also that, if f and g are continuous real-valued functions defied
on an interval [a, b], then

∫ b

a
(f+g)(t)dt =

∫ b

a
f(t) dt+

∫ b

a
g(t) dt,

∫ b

a
(αf)(t) = α

∫ b

a
f(t) dt,

and for every s ∈ [a, b],

∫ s

a
(f+g)(t)dt =

∫ s

a
f(t) dt+

∫ s

a
g(t) dt,

∫ s

a
(αf)(t) = α

∫ s

a
f(t) dt.

Abstracting the above operations between specific vector spaces, we
define the notion of a linear transformation between general vector
spaces.

29
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2.2 Definition and Examples

Definition 2.1 (Linear transformation) Let V1 and V2 be vector
spaces (over the same scalar field F). A a function T : V1 → V2 is
said to be a linear transformation or a linear operator from V1 to V2

if

T (x+ y) = T (x) + T (y), T (αx) = αT (x)

for every x, y ∈ V1 and for every α ∈ F.

For x ∈ V1, we may denote the element T (x) by Tx as well.

EXAMPLE 2.1 Let V be a vector space and λ be a scalar. Define
T : V → V by T (x) = λx, x ∈ V . Then we see that T is a linear
transformation.

EXAMPLE 2.2 (Matrix as linear transformation) Let A =
(aij) be an m× n-matrix of scalars. For x ∈ Fn, let T (x) = Ax
for every x ∈ Fn. Then it follows that T : Fn → Fm is a linear
transformation.

EXAMPLE 2.3 For each j ∈ {1, . . . , n}, the function Tj : Fn → F
defined by Tjx = xj for x = (x1, . . . , xn) ∈ Fn, is a linear transfor-
mation.

More generally, we have the following example.

EXAMPLE 2.4 Let V be an n-dimensional space and let E =
{u1, . . . , un} be a basis of V . For x =

∑n
j=1 αjuj ∈ V , and for each

j ∈ {1, . . . , n}, define Tj : V → F by

Tjx = αj .

Then Tj is a linear transformation.

EXAMPLE 2.5 (Evaluation of functions) For a given point
τ ∈ [a, b], let Tτ : C[a, b]→ F be defined by

Tτf = f(τ), f ∈ C[a, b].

Then Tτ is a linear transformation.

More generally, we have the following example.
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EXAMPLE 2.6 Given points τ1, . . . , τn in [a, b], and ω1, . . . ωn in
F, let T : C[a, b]→ F be defined by

Tf =
n∑
i=1

f(τi)ωi, f ∈ C[a, b].

Then T is a linear transformation

EXAMPLE 2.7 (Differentiation) Let T : C1[a, b] → C[a, b] be
defined by

Tf = f ′, f ∈ C1[a, b],

where f ′ denotes the derivative of f . Then T is a linear transforma-
tion.

EXAMPLE 2.8 For λ, µ ∈ F, the function T : C1[a, b] → C[a, b]
defined by

Tf = λf + µf ′, f ∈ C1[a, b],

is a linear transformation.

More generally, we have the following example.

EXAMPLE 2.9 Let T1 and T2 be linear transformations from V1

to V2 and λ and µ be scalars. Then T : V1 → V2 defined by

T (x) = λT1(x) + µT2(x), x ∈ V1,

is a linear transformation.

EXAMPLE 2.10 (Definite integration) Let T : C[a, b]→ F be
defined by

Tf =

∫ b

a
f(t) dt, f ∈ C[a, b].

Then T is a linear transformation.

EXAMPLE 2.11 (Indefinite integration) Let T : C[a, b] →
C[a, b] be defined by

(Tf)(s) =

∫ s

a
f(t) dt, f ∈ C[a, b], s ∈ [a, b].

Then T is a linear transformation.
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EXAMPLE 2.12 (Linear transformation induced by a
matrix) Let A = (aij) be an m× n-matrix of scalars. For x =
(α1, . . . , αn) in Fn, let

Tx = (β1, . . . , βm), βi =

n∑
j=1

aijαj , i = 1, . . . ,m.

Then T : Fn → Fm is a linear transformation.

More generally, let V1 be an n-dimensional vector space and
V2 be an m-dimensional vector space. Let E1 = {u1, . . . , un} and
E2 = {v1, . . . , vm} be a bases of V1 and V2, respectively. For x =∑n

j=1 αjuj ∈ V , define T : V1 → V2 by

Tx =
m∑
i=1

βivi, where βi =
n∑
j=1

aijαj , i ∈ {1, . . . ,m}.

Then T is a linear transformation.

EXAMPLE 2.13 Let V1 and V2 be vector spaces with dimV1 = n <
∞. Let E1 = {u1, . . . , un} be a basis of V1 and E2 = {v1, . . . , vm} be
a subset of V2. For x =

∑n
j=1 αjuj ∈ V1, define T : V1 → V2 by

Tx =
m∑
i=1

αivi.

Then T is a linear transformation.

Exercise 2.1 Show that the linear transformation T in Example
2.13 is

(a) injective if and only if E2 is linearly independent,

(b) surjective if and only if span (E2) = V2. �

Definition 2.2 (Isomorphism of vector spaces) Vector V1 and
V2 are said to be linearly isomorphic if there exists a bijective
linear transformation T : V1 → V2, and in that case we write V1 ' V2.

Example 2.13 shows that any two finite dimensional vector spaces
of the same dimension are linearly isomorphic.

If the codomain of a linear transformation is the scalar field F,
then it has a special name.
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Definition 2.3 (Linear functional) Let V be a vector space. A
linear transformation T : V → F is called a linear functional on V .

Linear functionals are usually denoted by small letters such as f ,
g, etc., whereas linear transformations between general vector spaces
are denoted by capital letters A, B, T , etc.

The linear transformations given in Examples 2.3, 2.4, 2.5, and
2.10 are linear functionals.

The linear functionals f1, . . . , fn defined in Example 2.4 are called
the coordinate functionals on V with respect to the basis E of V .

Definition 2.4 Let V be an n-dimensional vector space and let
E = {u1, . . . , un} be a basis of V . For x =

∑n
j=1 αjuj ∈ V , and for

each j ∈ {1, . . . , n}, define fj : V → F by

fj(x) = αj .

Then f1, . . . , fn are linear functionals on V , and they are called the
coordinate functionals on V with respect to the basis E of V .

We observe that if f1, . . . , fn are the coordinate functionals on V
with respect to the basis E = {u1, . . . , un} of V , then

fj(ui) = δij ∀ i, j = 1, . . . , n.

It is to be remarked that these linear functionals depend not only on
the basis E = {u1, . . . , un}, but also on the order in which u1, . . . , un
appear in the representation of any x ∈ V .

2.3 Space of Linear Transformations

We shall denote the set of all linear transformations from a vector
space V1 to a vector space V2 by L(V1, V2). If V1 = V2, then we write
L(V1, V2) by L(V ), where V = V1 = V2.

On the set L(V1, V2), define addition and scalar multiplication
pointwise, i.e., for T, T1, T2 in L(V1, V2) and α ∈ F, linear transfor-
mations T1 + T2 and αT are defined by

(T1 + T2)(x) = T1x+ T2x,

(αT )(x) = αTx
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for all x ∈ V . Then it is seen that L(V1, V2) is a vector space with
its zero element as the zero operator O : V1 → V2 defined by

Ox = 0 ∀x ∈ V1

and the additive inverse −T of T ∈ L(V1, V2) is −T : V1 → V2 defined
by

(−T )(x) = −Tx ∀x ∈ V1.

The space L(V,F) of all linear functionals on V is called the dual
of the space V .

Theorem 2.1 Let V be a finite dimensional vector space, and let
E = {u1, . . . , un} be a basis of V . If f1, . . . , fn are the coordinate
functionals on V with respect to E, then we have the following:

(i) Every x ∈ V can be written as x =
∑n

j=1 fj(x)uj.

(ii) {f1, . . . , fn} is a basis of L(V,F).

Proof. Since E = {u1, . . . , un} is a basis of V , for every x ∈ V ,
there exist unique scalars α1, . . . αn such that x =

∑n
j=1 αjuj . Now,

using the relation fi(uj) = δij , it follows that

fi(x) =
n∑
j=1

αjfi(uj) = αi, i = 1, . . . , n.

Therefore, the result in (i) follows.

To see (ii), first we observe that if
∑n

i=1 αifi = 0, then

αj =
n∑
i=1

αifi(uj) = 0 ∀ j = 1, . . . , n.

Hence, {f1, . . . , fn} is linearly independent in L(V,F). It remains to
show that the span {f1, . . . , fn} = L(V,F). For this, let f ∈ L(V,F)
and x ∈ V . Then using the representation of x in (i), we have

f(x) =
n∑
j=1

fj(x)f(uj) =

( n∑
j=1

f(uj)fj

)
(x)

for all x ∈ V . Thus, f =
∑n

j=1 f(uj)fj so that f ∈ span {f1, . . . , fn}.
This completes the proof.
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Let V be a finite dimensional vector space and let E = {u1, . . . , un}
be a basis of V , and f1, . . . , fn be the associated coordinate function-
als. In view of the above theorem, we say that {f1, . . . , fn} is the
dual basis of L(V,F) with respect to the (ordered) basis E of V .

Exercise 2.2 (a) Let V1 and V2 be finite dimensional vector spaces,
and E1 = {u1, . . . , un} and E2 = {v1, . . . , vm} be bases of V1 and V2,
respectively. Let F1 = {f1, . . . , fn} be the dual basis of L(V1,F) with
respect to E1 and F2 = {g1, . . . , gn} be the dual basis of L(V2,F)
with respect to E2. For i = 1, . . . , n; j = 1, . . . ,m, let Tij : V → W
defined by

Tij(x) = fj(x)vi, x ∈ V1.

Show that {Tij : i = 1, . . . , n; j = 1, . . . ,m} is a basis of L(V1, V2).

(b) Let V1 and V2 be vector spaces, and V0 be a subspace of V1.
Let A0 : V0 → V2 be a linear transformation. Show that there exists
a linear transformation T : V1 → V2 such that A|V0 = A0. �

2.4 Matrix Representations

Let V1 and V2 be finite dimensional vector spaces, and E1 = {u1, . . . , un}
and E2 = {v1, . . . , vm} be bases of V1 and V2, respectively. Let
T : V1 → V2 be a linear transformation. Note that for every x ∈ V1,
there exists a unique (α1, . . . , αn) ∈ Fn such that x =

∑n
j=1 αjuj .

Then, by the linearity of T , we have

T (x) =
n∑
j=1

αjT (uj).

Since T (uj) ∈ V2 for each j = 1, . . . , n and {v1, . . . , vm} is a basis of
V2, Tuj can be written as

T (uj) =

m∑
i=1

aijvi

for some scalars a1j , a2j , . . . , amj . Thus,

T (x) =
n∑
j=1

αjTuj =
n∑
j=1

αj

(
m∑
i=1

aijvi

)
=

m∑
i=1

 n∑
j=1

aijαj

 vi.
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If we denote the i-th coordinate of a vector ~x ∈ Fn by ~xi, then the
above relation connecting the linear transformation T and the matrix
A = (aij) can be written as

Tx =
m∑
i=1

(A~x)ivi.

In view of the above representation of T , we say that the m × n
matrix A = (aij) is the matrix representation of T , with respect to
the ordered bases E1 and E2 of V1 and V2 respectively. This fact is
written as

[T ]E2,E1 = (aij).

Clearly, the above discussion also shows that for every m × n
matrix A = (aij), there exists a linear transformation T : V1 → V2

such that [T ]E2,E1 = (aij). Thus, there is a one-one correspondence
between L(V1, V2) onto Fm×n, namely,

T 7→ [T ]E2,E1 .

Exercise 2.3 Let V1 and V2 be finite dimensional vector spaces,
and E1 = {u1, . . . , un} and E2 = {v1, . . . , vm} be bases of V1 and V2,
respectively. Show the following:

(a) If {g1, . . . , gm} is the ordered dual basis of L(V1,F) with
respect to the basis E2 of V2, then for every T ∈ L(V1, V2),

[T ]E2,E1 = (gi(Tuj)) .

(b) If A,B ∈ L(V1, V2) and α ∈ F, then

[A+B]E2,E1 = [A]E2,E1 + [B]E2,E1 , [αA]E2,E1 = α[A]E2,E1 .

(c) Suppose {Mij : i = 1 . . . ,m; j = 1, . . . , n} is a basis of Fm×n.
If Tij ∈ L(V1, V2) is the linear transformation such that [Tij ]E2,E1 =
Mij , then {Tij : i = 1 . . . ,m; j = 1, . . . , n} is a basis of L(V1, V2).
(For example, Mij can be takes as in Example 1.28. �

Exercise 2.4 Let T : R3 → R3 be defined by

T (x1, x2, x3) = (x2 + x3, x3 + x1, x1 + x2), (x1, x2, x3) ∈ R3.
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Find the matrix representation of T with respect to the basis given
in each of the following.

(a) E1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, E2 = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}
(b) E1 = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}, E2 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
(c) E1 = {(1, 1,−1), (−1, 1, 1), (1,−1, 1)},
E2 = {(−1, 1, 1), (1,−1, 1), (1, 1,−1)

Exercise 2.5 Let T : P3 → P2 be defined by T (a0 + a1t + a2t
2 +

a3t
3) = a1 + 2a2t+ 3a3t

2. Find the matrix representation of T with
respect to the basis given in each of the following.

(a) E1 = {1, t, t2, t3}, E2 = {1 + t, 1− t, t2}
(b) E1 = {1, 1 + t, 1 + t+ t2, t3}, E2 = {1, 1 + t, 1 + t+ t2}
(c) E1 = {1, 1 + t, 1 + t+ t2, 1 + t+ t2 + t3}, E2 = {t2, t, 1}

Exercise 2.6 Let T : P2 → P3 be defined by T (a0 + a1t + a2t
2) =

(a0t+
a1
2 t

2 + a2
3 t

3). Find the matrix representation of T with respect
to the basis given in each of the following.

(a) E1 = {1 + t, 1− t, t2}, E2 = {1, t, t2, t3},
(b)E1 = {1, 1 + t, 1 + t+ t2}, E2 = {1, 1 + t, 1 + t+ t2, t3},
(c) E1 = {t2, t, 1}, E2 = {1, 1 + t, 1 + t+ t2, 1 + t+ t2 + t3},

2.5 Rank and Nullity

Let V1 and V2 be vector spaces and T : V1 → V2 be a linear transfor-
mation. Then it can be easily seen that the sets

R(T ) = {Tx : x ∈ V1}, N(T ) = {x ∈ V1 : Tx = 0}

are subspaces of V1 and V2, respectively.

Definition 2.5 The subspaces R(T ) and N(T ) associated with a
linear transformation T : V1 → V2 are called the range space of T
and null space of T , respectively. ♦

Definition 2.6 The dimension of R(T ) is called the rank of T ,
denoted by rankT , and the dimension of N(T ) is called the nullity
of T , denoted by nullT . ♦

Let T : V1 → V2 be a linear transformation. Clearly, T is onto or
surjective if and only if R(T ) = V2. Using the linearity of T , it can
be seen that (Verify)

• T is one-one if and only if N(T ) = {0}.
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Theorem 2.2 Let T : V1 → V2 be a linear transformation. If
{u1, . . . , un} is a basis of V1, then R(T ) = span {Tu1, . . . , Tun}.

Proof. Let {u1, . . . , un} be a basis of V1.
Clearly, span {Tu1, . . . , Tun} ⊆ R(T ). To show the other-way

inclusion, let y ∈ R(T ) and let x ∈ V1 be such that Tx = y. Since
{u1, . . . , un} is a basis of V1, x =

∑n
i=1 αiui for some α1, . . . , αn in

F. Hence, y = Tx =
∑n

i=1 αiTui ∈ span {Tu1, . . . , Tun}.

By the above theorem, we have

• rank (T ) ≤ dim (V1).

Theorem 2.3 Let T : V1 → V2 be a linear transformation. The we
have the following.

(1) If T is one-one and u1, . . . , uk are linearly independent in V1,
then Tu1, . . . , Tuk are linearly independent in V2.

(2) If u1, . . . , un are in V1 such that Tu1, . . . , Tun are linearly in-
dependent in V2, then u1, . . . un are linearly independent in V1.

Proof. (1) Suppose T is one-one and u1, . . . , uk are linearly inde-
pendent in V1. To show that Tu1, . . . , Tuk are linearly independent
in V2. For this, let α1, . . . , αk ∈ F be such that

α1Tu1 + · · ·+ αkTuk = 0. (∗)

We have to show that αi = 0, . . . , αk = 0. Now, (∗) implies that
T (α1u1 + · · ·+αkuk) = 0, so that α1u1 + · · ·+αkuk ∈ N(T ). Since T
is one-one, we have N(T = {0} so that α1u1 + · · ·+αkuk = 0. Now,
linearly independence of u1, . . . , uk implies that α1 = 0, . . . , αk = 0.

(2) Suppose u1, . . . , un are in V1 such that Tu1, . . . , Tun are lin-
early independent in V2. To show that u1, . . . , un are linearly inde-
pendent in V1. For this, let α1, . . . , αk ∈ F be such that

α1u1 + · · ·+ αkuk = 0. (∗∗)

We have to show that αi = 0, . . . , αk = 0. From (∗∗), we have
T (α1u1 + · · · + αkuk) = 0, i.e., α1Tu1 + · · · + αkTuk = 0. Since
Tu1, . . . , Tun are linearly independent, α1 = 0, . . . , αk = 0.

As a corollary to the above two theorems, we have the following.
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Theorem 2.4 Let V1 and V2 be finite dimensional vector spaces of
the same dimension, and let T : V1 → V2 be a linear transformation.
Then T is one-one if and only if it is onto.

Proof. Let u1, . . . , un in V1 form a basis of V1. Then by The-
orem 2.3 (1), {Tu1, . . . , Tun} is linearly independent in V2. Since
dim (V2) = n, {Tu1, . . . , Tun} is a basis of V2. Hence, by Theorem
2.2, R(T ) = span {Tu1, . . . , tun} = V2. Hence, T is onto.

Conversely, suppose that T is onto, i.e., R(T ) = V2. By Theorem
2.2, V2 = R(T ) = span {Tu1, . . . , tun} = V2. Since dim (V2) = n,
{Tu1, . . . , Tun} is a basis of V2. Now, let x ∈ V1 be such that Tx = 0.
Let α1, . . . , αn ∈ F be such that x =

∑n
i=1 αiui. Thus, we have

T (
∑n

i=1 αiui) = 0, i.e.,
∑n

i=1 αiTui = 0. Since Tu1, . . . , Tun are
linearly independent in V2, we have α1 = 0, . . . , αk = 0. Thus,
x = 0. Thus, we have shown that Tx = 0 implies x = 0. Hence, T is
one-one.

The above theorem need not be true if the spaces involved are
infinite dimensional.

EXAMPLE 2.14 Let V be the vector space of all sequences. Define
T1 : V → V and T2 : V → V by

T1(α1, α2, . . .) = (0, α1, α2, . . .), (α1, α2, . . .) ∈ V,

T2(α1, α2, . . .) = (α2, α3, α4, . . .), (α1, α2, . . .) ∈ V.

We observe that

• T1 and T2 are linear transformations;

• T1 is one-one, but not onto;

• T2 is onto, but not one-one.

The above T1 is called a right shift operator and T2 is called a left
shift operator on V .

Theorem 2.5 If V1 and V2 are finite dimensional vector spaces, then

V1 ' V2 ⇐⇒ dim (V1) = dim (V2).

Theorem 2.6 Let V and W be finite dimensional vector spaces and
T : V → V be a linear transformation. Let V0 ne a subspace of V
such that V = N(T )⊕ V0. Then V0 ' R(T ).
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Proof. Let {u1, . . . , uk} be a basis of N(T ), and let {v1, . . . , v`}
be a basis of V0. Define T0 : V0 → R(T ) by

T0

(∑̀
i=1

αivi

)
=
∑̀
i=1

αiTvi, (α1, . . . , α`) ∈ F`.

It can be easily verified (verify!) that T0 is a bijective linear trans-
formation.

As a corollary to the above theorem, we have the following.

Theorem 2.7 (rank-nullity theorem) Let V and W be vector
spaces and T : V →W be a linear transformation. Then

rank (T ) + null (T ) = dim (V ).

Definition 2.7 A linear transformation T : V →W is said to be of
finite rank if rankT <∞. ♦

Exercise 2.7 Let T : V1 → V2 be a linear transformation between
vector spaces V1 and V2. Show that T is of finite rank if and only
if there exists n ∈ N, {v1, . . . , vn} ⊂ V2 and {f1, . . . , fn} ⊂ L(V1,F)
such that Ax =

∑n
j=1 fj(x)vj for all x ∈ V1. �

2.5.1 Product and Inverse

The following theorem can be proved easily (Exercise).

Theorem 2.8 Let V1, V2, V3 be vector spaces, and let T1 : V1 → V2

and T2 : V2 → V3 be linear transformations. Then T : V1 → V3

defined by
T (x) = T2(T1(x)), x ∈ V1

is a linear transformation.

Definition 2.8 Let T1, T2, T be as in Theorem 2.8. Then the lin-
ear transformation T is called the product of T2 and T1, and it is
denoted by T2T1. ♦

Note that

T1 ∈ L(V1, V2), T2 ∈ L(V2, V3)⇒ T2T1 ∈ L(V1, V3)

and if V1 = V2 = V3 = V , then T1T2 and T2T1 are well-defined and
they belong to L(V ).
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Theorem 2.9 Let V1, V2, V3 be finite dimensional vector spaces,
and let T1 : V1 → V2 and T2 : V2 → V3 be linear transformations. Let
E1, E2, E3 be bases of V1, V2, V3, respectively. Then

[T2T1]E3,E1 = [T2]E3,E2 [T1]E2,E1 .

Proof. Let E1 := {u1, . . . , un}, E2 := {v1, . . . , vm}, E3 := {w1, . . . , wk}
be ordered bases of V1, V2, V3, respectively. Let

[T1]E2,E1 = (aij), [T2]E3,E2 = (bij).

That is,

T1uj =
m∑
i=1

aijvi, T2vj =
k∑
i=1

bijwi.

Then,

T2T1uj = T2

( m∑
`=1

a`jv`

)
=

m∑
`=1

a`jT2v`

=
m∑
`=1

a`j

k∑
i=1

bi`wi =
k∑
i=1

( m∑
`=1

bi`a`j

)
wi.

Thus, [T2T1]E3,E1 = (cij), where cij =
∑m

`=1 bi`a`j . Hence, [T2T1]E3,E1

is the matrix [T2]E3,E2 [T1]E2,E1 .

Let V be a finite dimensional vector space and let E = {u1, . . . , un}
be an ordered basis. Then we know that, for every x ∈ V , there ex-
ists a unique (α1, . . . , αn) ∈ Kn such that x =

∑n
i=1 αjuj . Let us use

the notation [x]E for the column vector with entries α1, . . . , αn, that
is,

[x]E := [α1, . . . , αn]T .

We observe (verify!) that for x, y ∈ V and α ∈ K,

[x] = 0 ⇐⇒ x = 0, [x+ y]E = [x]E + [y]E , [αx]E = α[x]E .

In fact, the map x 7→ [x]E is a linear isomorphism from V onto Kn.
Now, ifW is a finite dimensional vector space and F = {v1, . . . , vm}

is an ordered basis of W , and T : V →W is a linear transformation,
then we see (verify!) that

[Tx]F = [T ]F,E [x]E ∀x ∈ V.
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Hence, it follows that

[Tuj ]F = [T ]F,E [uj ]E = [T ]F,Ee
T
j ∀ j = 1, . . . , n.

Thus, [Tuj ]F is the j-th column of [T ]F,E.

Theorem 2.10 Let V and W be a finite dimensional vector space
and let E = {u1, . . . , un} and F = {v1, . . . , vm} be an ordered bases
of V and W , respectively, and let T : V →W be a linear transforma-
tion. Then T is one-one if and only if columns of [T ]F,E are linearly
independent.

Proof. Recall that T is one-one iff N(T ) = 0. Hence, T is not
one one-one iff ∃x 6= 0 in V such that Tx = 0 iff ∃ (α1, . . . , αn) 6= 0
such that T (α1u1 + · · ·+ αnun) = 0. But,

[T (α1u1 + · · ·+ αnun)]F = α1[T (u1)]F + · · ·+ αn[T (un)]F .

Thus, T is not one one-one iff [T (u1)]F , . . . , [T (un)]F are linearly
dependent in Km, that is, iff the columns of [T ]F,E are linearly de-
pendent.

Theorem 2.11 Let V and W be finite dimensional vector spaces,
and A : V →W be linear transformation. Then A is bijective if and
only if there exists linear transformation B : W → V such that

BA = IV , AB = IW ,

where IV and IW are the identity operators on V and W , respectively.

Proof. Suppose A is bijective. Let B : W → V be defined by
By = x for y ∈ W , where x ∈ V is the unique vector in V such
that Ax = y. Then, it can be seen that B is a linear transformation
satisfying

BAx = x, ABy = y ∀x ∈ V, y ∈W.

If B̃ : W → V is a linear transformation such that

B̃Ax = x, AB̃y = y ∀x ∈ V, y ∈W,

then for every y ∈ W , if x ∈ V is the unique vector in V such that
Ax = y, then

B̃y = B̃Ax = x = BAx = By.
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Hence, B̃ = B.
Conversely, suppose B : W → V is a transformation such that

BAx = x, ABy = y ∀x ∈ V, y ∈W.

Then, for x ∈ V ,
Ax = 0⇒ x = BAx = 0

so that A is one-one. Also, for every y ∈ W , ABy = y so that A is
onto as well.

Definition 2.9 Let A : V →W be a bijective linear transformation.
Then the unique linear transformation B : W → V obtained as in
Theorem 2.11 satisfying

BA = IV , AB = IW ,

is called the inverse of A, and it is denoted by A−1. ♦

We observe that if T1 : V1 → V2 and T2 : V2 → V3 are bijective
linear transformations, then

(T2T1)−1 = T−1
1 T−1

2 .

Exercise 2.8 Prove the last statement.

Theorem 2.12 Let V and W be finite dimensional vector spaces,
and let A : V → W be linear transformation. Then we have the
following.

(1) A is one-one if and only if there exists a linear transformation
B : W → V such that BA = IV .

(2) A is onto if and only if there exists a linear transformation
B : W → V such that AB = IW .

Proof. (1) Suppose A is one-one. Let A0 : V → R(A) be defined
by A0x = Ax for all x ∈ V . Then, it can be see that A0 is a
bijective linear transformation. Let W0 be a subspace of W such
that W = R(T )⊕W0. Define B : W → V by

By = A−1
0 y0, y ∈W,

where y0 ∈ R(A) is the unique vector such that y − y0 ∈ W0. Then
we have

BAx = A−1
0 Ax = A−1

0 A0x = x ∀x ∈ V.
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(2) Suppose A is onto. Let V0 be a subspace of V such that V =
N(T )⊕ V0. Define A0 : V0 → W by A0x = Ax for all x ∈ V . Then,
it can be see that A0 is a bijective linear transformation. Define
B : W → V by

By = A−1
0 y, y ∈W.

Then we have

ABy = AA−1
0 y = A0A

−1
0 y = y ∀ y ∈W.

This completes the proof.

Having defined product of operators, we can define powers of
operators.

Definition 2.10 For A ∈ L(V ) and n ∈ N, An : V → V is defined
inductively by

An(x) = A
(
An−1(x)

)
, x ∈ X,

where A0(x) := x for every x ∈ V . ♦

Using powers of operators, we can define polynomials of an
operator.

Definition 2.11 For A ∈ L(V ) and for a polynomial p ∈ Pn, say
p(t) = a1 + a1t+ · · ·+ ant

n, the operator p(A) : V → V is defined by
p(A) = a1I + a1A+ · · ·+ anA

n. ♦

Exercise 2.9 Let V and W be finite dimensional vector spaces of
the same dimension, and let T : V →W be a linear transformation.
Let E and F be ordered bases of V and W , respectively. Show that
Show det[T ]F,E is independent of the bases E and F .

2.5.2 Change of basis

Let V be a finite dimensional vector space and let E and F be any
two ordered bases of V . For x ∈ V , how are the vectors [x]E and
[x]F related?

We know that there exists (λij) such that

vj =

n∑
i=1

λijui, j = 1, . . . , n. (∗)
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If x =
∑n

j=1 αjuj =
∑n

j=1 βjvj , then we have

n∑
i=1

αiui =
n∑
j=1

βjvj =
n∑
j=1

βj

( n∑
i=1

λijui

)
=

n∑
i=1

( n∑
j=1

λijβj

)
ui.

Hence,

αi =
n∑
j=1

λijβj .

Thus,
[x]E = J [x]F , where J := (λij).

From (∗), we also observe that

Ivj =
n∑
i=1

aijui, j = 1, . . . , n

so that
[I]E,F = (aij) = J, [x]E = [I]E,F [x]F .

The above matrix is the matrix corresponding the change of basis E
to F , called the change of basis matrix.

Now, let V and W be finite dimensional vector spaces and let
T : V → W be a linear transformation. Let E and Ẽ be ordered
bases of V , and F and F̃ be ordered bases of W . How the matrices
[T ]F,E and [T ]F̃ ,Ẽ are related?

Note that
[T ]F̃ ,Ẽ = [I2]F̃ ,F [T ]F,E [I1]E,Ẽ ,

where I1 and I2 are the identity operators on V and W , respectively.
Also,

[I1]Ẽ,E [I1]E,Ẽ = [I1]Ẽ,Ẽ , [I2]F̃ ,F [I2]F,F̃ = [I2]F̃ ,F̃ .

It can be seen that, for any basis E of a finite dimensional vector
space, [I]EE is the identity matrix (δij). Hence,

[I1]−1
E,Ẽ

= [I1]Ẽ,E , [I2]−1
F̃ ,F

= [I2]F,F̃ ,

so that
[T ]F,E = [I2]F,F̃ [T ]F̃ ,Ẽ [I1]Ẽ,E .

Thus, if
E = {u1, . . . , un}, Ẽ = {ũ1, . . . , ũn},
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F = {v1, . . . , vm}, F̃ = {ṽ1, . . . , ṽm},
then find the matrices J1 and J2 corresponding to the linear trans-
formations

uj 7→ ũj and vj 7→ ṽj

on V and W , respectively, then

[T ]F̃ ,Ẽ = J−1
2 [T ]F,EJ1.

In particular, if V = W, E = F, Ẽ = F̃ , then we have

[T ]Ẽ,Ẽ = J−1
1 [T ]E,EJ1.

Definition 2.12 Matrices A ∈ Km×n and B ∈ Km×n are said to
be equivalent if there exists invertible matrices P ∈ Kn×n and Q ∈
Km×m such that

B = Q−1AP.

Square matrices A ∈ Kn×n and B ∈ Kn×n are said to be similar if
there exists an invertible matrix P ∈ Kn×n such that

B = P−1AP.

♦
Thus, if T : V → V is a linear transformation on a finite dimen-

sional vector space V and if E and F are bases of V , then [T ]EE is
similar to [T ]FF .

2.5.3 Eigenvalues and Eigenvectors

Let A : V → X be a linear operator on a vector space V .
A scalar λ is called an eigenvalue of A if there exists a nonzero

vector x ∈ X such that
Ax = λx,

and in that case, x is called an eigenvector of A corresponding to
the eigenvalue λ.

The set of all eigenvectors of A corresponding to an eigenvalue,
together with the zero vector, is called an eigenspace of A, and the
set of all eigenvalues of A is called the eigenspectrum of A.

We denote the eigenspectrum of A by σeig(A).
Thus, λ ∈ F is an eigenvalue of A if and only if A − λI is not

injective, and in that case, N(A−λI) is the corresponding eigenspace
of A.
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EXAMPLE 2.15 The conclusions in (i)-(vi) below can be verified
easily:

(i) Let A : R3 → R3 be defined by

A : (α1, α2, α3) 7→ (α1, α1 + α2, α1 + α2 + α3)

Then σeig(A) = {1} and N(A− I) = span {(0, 0, 1)}.
(ii) Let A : F2 → F2 be defined by A : (α1, α2) 7→ (α2,−α1). If

F = R, then A has no eigenvalues, i.e., σeig(A) = ∅.

(iii) Let A be as in (ii) above. If F = C, then σeig(A) = {i,−i},
N(A− iI) = span {(1, i)} and N(A+ iI) = span {(1,−i)}.

(iv) Let V = c00, and let (λn) be a sequence of scalars. Let
A : V → X be defined by

(Ax)(i) = λix(i) ∀x ∈ X, i ∈ N.

Then σeig(A) = {λ1, λ2, . . .}, and for each j ∈ N, ej is an eigenvector
corresponding to the eigenvalue λj . In case λ1, λ2, . . . are distinct,
then N(A − λjI) = span {ej} for all j ∈ N. Here, ej ∈ c00 is such
that ej(i) = δij , for i, j ∈ N.

(v) Let A : P → P be defined by

(Ax)(t) = tx(t), x ∈ P.

Then σeig(A) = ∅.

(vi) Let X be P[a, b] and A : V → X be defined by

(Ax)(t) =
d

dt
x(t), x ∈ P.

Then σeig(A) = {0} and N(A) = span {x0}, where x0(t) = 1 for all
t ∈ [a, b].

Existence of an eigenvalue

From the above examples we observe that in those cases in which
the eigenspectrum is empty, either the scalar field is R or the vector
space is infinite dimensional. The next result shows that if the space
is finite dimensional and if the scalar field is the set of all complex
numbers, then the eigenspectrum is nonempty.

Theorem 2.13 Let X be a finite dimensional vector space over C.
Then every linear operator on X has at least one eigenvalue.
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Proof. Let X be an n-dimensional vector space over C, and A :
V → X be a linear operator. Let x be a nonzero element in X. Since
dimX = n, the set {x,Ax,A2x, . . . , Anx} is linearly dependent. Let
a0, a1 . . . , an be scalars with at least one of them being nonzero such
that

a0x+ a1Ax+ · · ·+ anA
nx = 0.

Let k = max {j : aj 6= 0, j = 1, . . . , n}. Then writing

p(t) = a0 + a1t+ · · ·+ akt
k, p(A) = a0I + a1A+ · · ·+ akA

k,

we have
p(A)(x) = 0.

By fundamental theorem of algebra, there exist λ1, . . . , λk in C such
that

p(t) = ak(t− λ1)(t− λ2) . . . (t− λk).

Thus, we have

(A− λ1I)(A− λ2I) . . . (A− λkI)(x) = p(A)(x) = 0.

The above relation shows that at least one of A− λ1I, . . . , A− λkI
is not injective so that at least one of λ1, . . . , λk is an eigenvalue of
A.

Theorem 2.14 Let λ1, . . . , λn be distinct eigenvalues of a linear
operator A : V → X with corresponding eigenvectors u1, . . . , un,
respectively. Then the set {u1, . . . , un} is linearly independent.

Proof. We prove this result by induction. The result is obvious
if n = 1. Hence, we consider the case of n > 1. Let k ∈ N be such
that k < n, and assume that {u1, . . . , uk} is linearly independent.
We have to show that {u1, . . . , uk, uk+1} is linearly independent. For
scalars c1, . . . , ck, ck+1, let

x = c1u1 + · · ·+ ckuk + ck+1uk+1.

We have to show that, if x = 0, then cj = 0 for j = 1, . . . , k + 1.
We note that

Ax = c1λ1u1 + · · ·+ ckλkuk + ck+1λk+1uk+1

so that

Ax− λk+1x = c1(λ1 − λk+1)u1 + · · ·+ ck(λk+1 − λk)uk.
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Now suppose that x = 0. Then we have Ax− λk+1x = 0, i.e.,

c1(λ1 − λk+1)u1 + · · ·+ ck(λk − λk+1)uk = 0.

From this, using the fact that {u1, . . . , uk} is linearly independent
in X, and λ1, . . . , λk, λk+1 are distinct, it follows that cj = 0 for
j = 1, . . . , k. Therefore, 0 = x = ck+1uk+1 so that ck+1 = 0. This
completes the proof.

By the above theorem we can immediately infer that if V is finite
dimensional, then the eigenspectrum of every linear operator on X
is a finite set.
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Inner Product Spaces

3.1 Motivation

In Chapter 1 we defined a vector space as an abstraction of the
familiar Euclidian space. In doing so, we took into account only two
aspects of the set of vectors in a plane, namely, the vector addition
and scalar multiplication. Now, we consider the third aspect, namely
the angle between vectors.

Recall from plane geometry that if ~x = (x1, x2) and ~y = (y1, y2)
are two non-zero vectors in the plane R2, then the angle θx,y between
~x and ~y is given by

cos θx,y :=
x1y1 + x2y2

|~x| |~y|
,

where for a vector ~u = (u1, u2) ∈ R2, |~u| denotes the absolute value
of the vector ~u, i.e.,

|~u| :=
√
u2

1 + u2
2,

which is the distance of the point (u1, u2) ∈ R2 from the coordinate
origin.

We may observe that the angle θx,y between the vectors ~x and ~y
is completely determined by the quantity x1y1 + x2y2, which is the
dot product of ~x and ~y. Breaking the convention, let us denote this
quantity, i.e., the dot product of ~x and ~y, by 〈~x, ~y〉, i.e.,

〈~x, ~y〉 = x1y1 + x2y2.

A property of the function (~x, ~y) 7→ 〈~x, ~y〉 that one notices immedi-
ately is that, for every fixed ~y ∈ R2, the function

x 7→ 〈~x, ~y〉, ~x ∈ R2,

50
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is a linear transformation from R2 into R, i.e.,

〈~x+ ~u, ~y〉 = 〈~x, ~y〉+ 〈~u, ~y〉, 〈α~x, ~y〉 = α〈~x, ~y〉 (3.1)

for all ~x, ~u in R2. Also, we see that for all ~x, ~y in R2,

〈~x, ~x)〉 ≥ 0, (3.2)

〈~x, ~x〉 = 0 ⇐⇒ ~x = ~0, (3.3)

〈~x, ~y〉 = 〈~y, ~x〉. (3.4)

If we take C2 instead of R2, and if we define 〈~x, ~y〉 = x1y1 +x2y2, for
~x, ~y in C2, then the above properties are not satisfied by all vectors
in C2. In order to accommodate the complex situation, we define a
generalized dot product, as follows: For ~x, ~y in F2, let

〈~x, ~y〉∗ = x1ȳ1 + x2ȳ2,

where for a complex number z, z̄ denotes its complex conjugation.
It is easily seen that 〈·, ·〉∗ satisfies properties (3.1) – (3.4).

Now, we shall consider the abstraction of the above modified dot
product.

3.2 Definition and Some Basic Properties

Definition 3.1 (Inner Product) An inner product on a vector
space V is a map (x, y) 7→ 〈x, y〉 which associates each pair (x, y)
of vectors in V , a unique scalar 〈x, y〉 which satisfies the following
axioms:

(a) 〈x, x〉 ≥ 0 ∀x ∈ V ,

(b) 〈x, x〉 = 0 ⇐⇒ x = 0,

(c) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 ∀x, y, z ∈ V ,

(d) 〈αx, y〉 = α〈x, y〉 ∀α ∈ F and ∀x, y ∈ V , and

(e) 〈x, y〉 = 〈y, x〉 ∀x, y ∈ V .

Definition 3.2 (Inner Product Space) A vector space together
with an inner product is called an inner product space.

If an inner product 〈·, ·〉 is defined on a vector space V , and if V0

is a subspace of V , then the restriction of 〈·, ·〉 to V0 × V0, i.e., the
map (x, y) 7→ 〈x, y〉 for (x, y) ∈ V0 × V0 is an inner product on V0.
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Before giving examples of inner product spaces, let us observe
some properties of an inner product.

Proposition 3.1 Let V be an inner product space. For a given
y ∈ V , let f : V → F be defined by

f(x) = 〈x, y〉, x ∈ V.

Then f is a linear functional on V .

Proof. The result follows from axioms (c) and (d) in the definition
of an inner product: Let x, x′ ∈ V and α ∈ F. Then, by axioms (c)
and (d),

f(x+ x′) = 〈x+ x′, y〉 = 〈x, y〉+ 〈x′, y〉 = f(x) + fx′),

f(αx) = 〈αx, y〉 = α〈x, y〉 = αf(x).

Hence, f is a linear transformation.

Proposition 3.2 Let V be an inner product space. Then for every
x, y, u, v in V , and for every α ∈ F,

〈x, u+ v〉 = 〈x, u〉+ 〈x, v〉, 〈x, αy〉 = ᾱ〈x, y〉.

Proof. The result follows from axioms (c),(d) and (e) in the def-
inition of an inner product: Let x, y, u, v in V and α ∈ F.

〈x, u+v〉 = 〈u+ v, x} = 〈u, x〉+ 〈v, x〉 = 〈u, x〉+〈v, x〉 = 〈x, u〉+〈x, v〉,

〈x, αy〉 = 〈αy, x〉 = α〈y, x〉 = ᾱ〈x, y〉.

This completes the proof.

3.3 Examples of Inner Product Spaces

EXAMPLE 3.1 For x = (α1, . . . , αn) and y = (β1, . . . , βn) in Fn,
define

〈x, y〉 =
n∑
j=1

αj β̄j .

It is seen that 〈·, ·〉 is an inner product on Fn.

The above inner product is called the standard inner product
on Fn.
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EXAMPLE 3.2 Suppose V is a finite dimensional vector space, say
of dimension n, and E := {u1, . . . , un} is an ordered basis of V . For
x =

∑n
i=1 αiui, y =

∑n
i=1 βiui in V , let

〈x, y〉E :=
n∑
i=1

αiβ̄i.

Then it is easily seen that 〈·, ·〉E is an inner product on V .
More generally, if T : V → Fn is a linear isomorphism, then

〈x, y〉T := 〈Tx, Ty〉Fn

defines an inner product on V . Here, 〈·, ·〉Fn is the standard inner
product on Fn.

EXAMPLE 3.3 For f, g ∈ C[a, b], let

〈f, g〉 :=

∫ b

a
f(t)g(t) dt.

This defines an inner product on C[a, b]: Clearly,

〈f, f〉 =

∫ b

a
|f(t)|2 dt ≥ 0 ∀f ∈ C[a, b],

and by continuity of the function f ,

〈f, f〉 :=

∫ b

a
|f(t)|2 dt = 0 ⇐⇒ f(t) = 0 ∀ t ∈ [a, b].

The other axioms can be verified easily.

EXAMPLE 3.4 Let τ1, . . . , τn+1 be distinct real numbers. For
p, q ∈ Pn, let

〈p, q〉 :=
n+1∑
i=1

p(τi)q(τi).

This defines an inner product on Pn: Clearly,

〈p, p〉 =
n+1∑
i=1

|p(τi)|2 ≥ 0 ∀p ∈ Pn,

and by the fact that a nonzero polynomial in Pn cannot have more
than n distinct zeros, it follows that

〈p, p〉 :=

n+1∑
i=1

|p(τi)|2 = 0 ⇐⇒ p = 0.

The other axioms can be verified easily.
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3.4 Norm of a Vector

Recall that the absolute value of a vector ~x = (x1, x2) ∈ R2, is given
by

|~x| =
√
x2

1 + x2
2

Denoting the standard inner product on R2 by 〈x, x〉2, it follows that

|~x| =
√
〈x, x〉2.

As an abstraction of the above notion, we define the norm of a
vector.

Definition 3.3 (Norm of a Vector) Let V be an inner product
space. Then for x ∈ V , then norm of x is defined as the non-negative
square root of 〈x, x〉, and it is denoted by ‖x‖, i.e,

‖x‖ :=
√
〈x, x〉, x ∈ V.

Exercise 3.1 If x is a non-zero vector, then show that u := x/‖x‖
is a vector of norm 1. �

Recall from elementary geometry that if a, b are the lengths of
the adjacent sides of a parallelogram, and if c, d are the lengths of
its diagonals, then 2(a2 + b2) = c2 + d2. This is the well-known
parallelogram law. This has a generalized version in the setting of
inner product spaces.

Theorem 3.3 (Parallelogram law) For vectors x, y in an inner
product space V ,

‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
.

Exercise 3.2 Verify the parallelogram law (Theorem 3.3). �

3.5 Orthogonality and Orthonormal Bases

Recall that the angle θx,y between vectors ~x and ~y in R2 is given by

cos θx,y :=
〈~x, ~y〉2
|~x| |~y|

.

Hence, we can conclude that the vectors ~x and ~y are orthogonal if
and only if 〈~x, ~y〉2 = 0. This observation motivates us to have the
following definition.
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Definition 3.4 (Orthogonal vectors) Vectors x and y in an inner
product space V are said to be orthogonal to each other or x is
orthogonal to y if 〈x, y〉 = 0. In this case we write x ⊥ y, and read x
perpendicular to y, or x perp y.

Note that
(a) for x, y in V , x is orthogonal to y if and only if y is orthogonal

to x, i.e., x ⊥ y ⇐⇒ y ⊥ x, and

(b) the zero vector is orthogonal to every vector, i.e., 0 ⊥ x for
all x ∈ V .

Theorem 3.4 Let V be an inner product space, and x ∈ V . If
〈x, y〉 = 0 for all y ∈ V , then x = 0.

Proof. Clearly, if 〈x, y〉 = 0 for all y ∈ V , then 〈x, x〉 = 0 as well.
Hence x = 0

As an immediate consequence of the above theorem, we have the
following.

Corollary 3.5 Let V be an inner product space, and u1, u2, . . . , un
be linearly independent vectors in V . Let x ∈ V . Then

〈x, ui〉 = 0 ∀ i ∈ {1, . . . , n} ⇐⇒ 〈x, y〉 = 0 ∀ y ∈ span {u1, . . . , un}.

In particular, if {u1, u2, . . . , un} is a basis of V , and if 〈x, ui〉 = 0
for all i ∈ {1, . . . , n}, then x = 0.

Exercise 3.3 If dimV ≥ 2, and if 0 6= x ∈ V , then find a non-zero
vector which is orthogonal to x. �

EXAMPLE 3.5 Consider the standard inner product on Fn. For
each j ∈ {1, . . . , n}, let

ej = (δ1j , δ2j , . . . , δnj), where δij =

{
1 if i = j,

0 if i 6= j.

It is easily seen that ei ⊥ ej for every i 6= j. Also, ei + ej ⊥ ei − ej
for every i, j ∈ {1, . . . , n}.

EXAMPLE 3.6 Consider the the vector space C[0, 2π] with inner
product defined by

〈f, g〉 :=

∫ 2π

0
f(t)g(t) dt
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for f, g ∈ C[0, 2π]. For n ∈ N, let

un(t) := sin(nt), vn(t) = cos(nt), 0 ≤ t ≤ 2π.

Since ∫ 2π

0
cos(kt) dt = 0 =

∫ 2π

0
sin(kt) dt ∀ k ∈ Z,

it follows that, for n 6= m,

〈un, um〉 = 〈vn, vm〉 = 〈un, vn〉 = 〈un, vm〉 = 0.

Recall from elementary geometry that if a, b c are lengths of
sides of a right angled triangle with c being the hypotenuse, then
a2 + b2 = c2. This is the Pythagoras theorem Here is the generalized
form of it in the setting of an inner product space.

Theorem 3.6 (Pythagoras theorem) Suppose x and y are vectors
in an inner product space which are orthogonal to each other. Then

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Proof. Left as an exercise.

It is easily seen that, if the scalar field is R, then the converse of
the Pythagoras theorem also holds. That is,

Theorem 3.7 If V is an inner product space over R, and if x, y ∈ V
are such that ‖x+ y‖2 = ‖x‖2 + ‖y‖2, then x ⊥ y.

However, if the scalar field is C, then the converse of Pythagoras
theorem need not be true . A simple example shows this: Let X = C
with standard inner product, and for nonzero real numbers α, β ∈ R,
let x = α, y = i β. Then we have

‖x+ y‖2 = ‖α+ i β‖2 = |α|2 + |β|2 = ‖x‖2 + ‖y‖2,

but 〈x, y〉 = −i αβ 6= 0.

Definition 3.5 (Orthogonal to a set) Suppose S is a subset of an
inner product space V , and x ∈ S. Then x is said to be orthogonal
to S if 〈x, y〉 = 0 for all y ∈ S. In this case, we write x ⊥ S. The set
of vectors orthogonal to S is denoted by S⊥, i.e.,

S⊥ := {x ∈ V : x ⊥ S}.
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Exercise 3.4 Let V be an inner product space.
(a) Show that V ⊥ = {0}.
(b) If S is a basis of V , then show that S⊥ = {0}. �

Definition 3.6 (Orthogonal set) Suppose S is a subset of an
inner product space V . Then S is said to be an orthogonal set if
〈x, y〉 = 0 for all distinct x, y ∈ S, i.e., for every x, y ∈ S, x 6= y
implies x ⊥ y.

Theorem 3.8 Let S be an orthogonal set in an inner product space
V . If 0 6∈ S, then S is linearly independent.

Proof. Suppose 0 6∈ S and {u1, . . . , un} ⊆ S. If α1, . . . , αn are
scalars such that α1u1 + α2u2 + . . . + αnun = 0, then for every
j ∈ {1, . . . , n}, we have

0 =

〈 n∑
i=1

αiui, uj

〉
=

n∑
i=1

〈αiui, uj〉 =
n∑
i=1

αi〈ui, uj〉 = αj〈uj , uj〉.

Hence, αj = 0 for all j ∈ {1, . . . , n}.

Definition 3.7 (Orthonormal set) Suppose S is a subset of an
inner product space V . Then S is said to be an orthonormal set if it
is an orthogonal set and ‖x‖ = 1 for all x ∈ S.

By Theorem 3.8, it follows that every orthonormal set is linearly
independent. In particular, if V is an n-dimensional inner product
space and E is an orthonormal set consisting of n vectors, then E is
a basis of V .

Definition 3.8 (Orthonormal basis) Suppose V is a finite di-
mensional inner product space. An orthonormal set in V which is
also a basis of V is called an orthonormal basis of V .

EXAMPLE 3.7 The set E := {e1, e2, . . . , en} in Example 3.5 is an
orthonormal basis of Fn (with respect to the standard inner prod-
uct).

Theorem 3.9 Suppose V is an inner product space, and {u1, . . . , un}
is an orthonormal subset of V . Then, for every x ∈ span {u1, . . . , un},

x =
n∑
j=1

〈x, uj〉uj , ‖x‖2 =
n∑
j=1

|〈x, uj〉|2.
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Proof. Let x ∈ span {u1, . . . , un}, Then there exist scalars α1, α2, . . . , αn
such that

x = α1u1 + · · ·+ αnun.

Hence, for every i ∈ {1, . . . , n},

〈x, ui〉 = α1〈u1, ui〉+ · · ·+ αn〈un, ui〉 = αi.

and

‖x‖2 = 〈x, x〉 =

〈 n∑
i=1

αiui,
n∑
j=1

αjuj

〉
=

n∑
i=1

n∑
j=1

αiᾱj〈ui, uj〉

=
n∑
i=1

|αi|2 =
n∑
i=1

|〈x, ui〉|2.

This completes the proof.

The proof of the following corollary is immediate from the above
theorem.

Corollary 3.10 (Fourier expansion and Parseval’s identity)
If {u1, . . . , un} is an orthonormal basis of an inner product space V
, then for every x ∈ V ,

x =
n∑
j=1

〈x, uj〉uj , ‖x‖2 =
n∑
j=1

|〈x, uj〉|2.

Another consequence of Theorem 3.9 is the following.

Corollary 3.11 (Bessel’s inequality) Suppose V is an inner prod-
uct space, and {u1, . . . , un} is an orthonormal subset of V . Then, for
every x ∈ V ,

n∑
j=1

|〈x, uj〉|2 ≤ ‖x‖2.

Proof. Let x ∈ V , and let

y =
n∑
i=1

〈x, ui〉ui.

Since y ∈ span {u1, . . . , un}, by Theorem 3.9,

‖y‖2 =
n∑
i=1

|〈y, ui〉|2.
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Note that 〈y, ui〉 = 〈x, ui〉 for all i ∈ {1, . . . , n}, i.e., 〈x−y, ui〉 = 0 for
all i ∈ {1, . . . , n}. Hence, 〈x − y, y〉 = 0. Therefore, by Pythagoras
theorem,

‖x‖2 = ‖y‖2 + ‖x− y‖2 ≥ ‖y‖2 =

n∑
i=1

|〈x, ui〉|2.

This completes the proof.

EXAMPLE 3.8 Let V = C[0, 2π] with inner product 〈x, y〉 :=∫ 2π
0 x(t)y(t)dt for x, y in C[0, 2π]. For n ∈ Z, let un be defined by

un(t) = ei nt, t ∈ [0, 2π].

Then it is seen that

〈un, um〉 =

∫ 2π

0
ei (n−m)tdt =

{
1 if n = m,
0 if n 6= m.

Hence, {un : n ∈ Z} is an orthonormal set in C[0, 2π]. By Theorem
3.9, if x ∈ span {uj : j = −N,−N + 1, . . . , 0, i, . . . , N},

x =
N∑

j=−N
an e

i nt with an =
1

2π

∫ 2π

0
x(t)e−i ntdt.

Now, suppose that V is an n-dimensional inner product space,
and {u1, . . . , un} be an orthonormal basis of V . Then, by Corollary
3.10, every x ∈ V can be written as

x =
n∑
j=1

〈x, uj〉uj .

Hence, for every linear functional f : V → F,

f(x) =
n∑
j=1

〈x, uj〉f(uj)

=

n∑
j=1

〈x, f(uj)uj〉

=

〈
x,

n∑
j=1

f(uj)uj

〉
.

Thus, we have given a constructive proof for the following theo-
rem.
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Theorem 3.12 (Riesz representation theorem) Let V be a finite
dimensional inner product space. Then for very linear functional
f : V → F, there exists yf ∈ V such that

f(x) = 〈x, yf 〉 ∀x ∈ V.

It is easily seen that the vector yf in the above theorem is unique.
Indeed, if y1 and y2 are in V such that

f(x) = 〈x, y1〉, f(x) = 〈x, y2〉 ∀x ∈ V,

then
〈x, y1 − y2〉 = 0 ∀x ∈ V

so that by Theorem 3.4, y1 − y2 = 0, i.e., y1 = y2.

Exercise 3.5 Suppose V is an n-dimensional inner product space
and {u1, . . . , un} be an orthonormal basis of V . Show that every
linear functional f : V → F can be written as

f =

n∑
j=1

f(uj)fj ,

where, for each j ∈ {1, . . . , n}, fj : V → F is the linear functional
defined by fj(x) = 〈x, uj〉, x ∈ V . �

3.6 Gram-Schmidt Orthogonalization

A question that naturally arises is: Does every finite dimensional
inner product space has an orthonormal basis? We shall answer this
question affirmatively.

Theorem 3.13 (Gram-Schmidt orthogonalization) Let V be
an inner product space and u1, u2, . . . , un are linearly independent
vectors in V . Then there exist orthogonal vectors v1, v2, . . . , vn in V
such such that

span {u1, . . . , uk} = span {v1, . . . , vk} ∀ k ∈ {1, . . . , n}.

In fact, the vectors v1, v2, . . . , vn defined by

v1 := u1

vk+1 := uk+1 −
k∑
j=1

〈uk+1, vj〉
〈vj , vj〉

vj , k = 1, 2, . . . , n− 1,

satisfy the requirements.
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Proof. We construct orthogonal vectors v1, v2, . . . , vn in V such
such that span {u1, . . . , uk} = span {v1, . . . , vk} for all k ∈ {1, . . . , n}.

Let v1 = u1. Let us write u2 as

u2 = αu1 + v2,

where α is chosen in such a way that v2 := u2−αu1 is orthogonal to
v1, i.e., 〈u2 − αu1, v1〉 = 0, i.e.,

α =
〈u2, v1〉
〈v1, v1〉

.

Thus, the vector

v2 := u2 −
〈u2, v1〉
〈v1, v1〉

v1

is orthogonal to v1. Moreover, using the linearly independence of
u1, u2, it follows that v2 6= 0, and span {u1, u2} = span {v1, v2}.
Next, we write

u3 = (α1v1 + α2v2) + v3,

where α1, α2 are chosen in such a way that v3 := u3 − (α1v1 + α2v2)
is orthogonal to v1 and v2, i.e.,

〈u3 − (α1v1 + α2v2), v1〉 = 0, 〈u3 − (α1v1 + α2v2), v2〉 = 0.

That is, we take

α1 =
〈u3, v1〉
〈v1, v1〉

, α2 =
〈u3, v2〉
〈v2, v2〉

.

Thus, the vector

v3 := u3 −
〈u3, v1〉
〈v1, v1〉

v1 −
〈u3, v2〉
〈v2, v2〉

v2

is orthogonal to v1 and v2. Moreover, using the linearly independence
of u1, u2, u3, it follows that v3 6= 0, and

span {u1, u2, u3} = span {v1, v2, v3}.

Continuing this procedure, we obtain orthogonal vectors v1, v2, . . . , vn
defined by

vk+1 := uk+1 −
〈uk+1, v1〉
〈v1, v1〉

v1 −
〈uk+1, v2〉
〈v2, v2〉

v2 − . . .−
〈uk+1, vk〉
〈vk, vk〉

vk
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which satisfy

span {u1, . . . , uk} = span {v1, . . . , vk}

for each k ∈ {1, 2, . . . , k − 1}.

Exercise 3.6 Let V be an inner product space, and let u1, u2, . . . , un
be orthonormal vectors. Define w1, w2, . . . , wn iteratively as follows:

v1 := u1 and w1 =
v1

‖v1‖

and for each k ∈ {1, 2, . . . , n− 1}, let

vk+1 := uk+1 −
k∑
i=1

〈uk+1, wi〉wi and wk+1 =
vk+1

‖vk+1‖
.

Show that {w1, w2, . . . , wn} is an orthonormal set, and

span {w1, . . . , wk} = span {u1, . . . , uk}, k = 1, 2, . . . , n.�

From Theorem 3.13, we can conclude the following.

Theorem 3.14 Every finite dimensional inner product space has an
orthonormal basis.

EXAMPLE 3.9 Let V = F3 with standard inner product. Consider
the vectors u1 = (1, 0, 0), u2 = (1, 1, 0), u3 = (1, 1, 1). Clearly,
u1, u2, u3 are linearly independent in F3. Let us orthogonalize these
vectors according to the Gram-Schmidth orthogonalizaion procedure:

Take v1 = u1, and

v2 = u2 −
〈u2, v1〉
〈v1, v1〉

v1.

Note that 〈v1, v1〉 = 1 and 〈u2, v1〉 = 1. Hence, v2 = u2 − v1 =
(0, 1, 0). Next, let

v3 = u3 −
〈u3, v1〉
〈v1, v1〉

v1 −
〈u3, v2〉
〈v2, v2〉

v2.

Note that 〈v2, v2〉 = 1, 〈u3, v1〉 = 1 and 〈u3, v2〉 = 1 Hence, v3 =
u2 − v1 − v2 = (0, 0, 1). Thus,

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

is the Gram-Schmidt orthogonalization of {u1, u2, u3}.
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EXAMPLE 3.10 Again let V = F3 with standard inner product.
Consider the vectors u1 = (1, 1, 0), u2 = (0, 1, 1), u3 = (1, 0, 1).
Clearly, u1, u2, u3 are linearly independent in F3. Let us orthogonal-
ize these vectors according to the Gram-Schmidth orthogonalizaion
procedure:

Take v1 = u1, and

v2 = u2 −
〈u2, v1〉
〈v1, v1〉

v1.

Note that 〈v1, v1〉 = 2 and 〈u2, v1〉 = 1. Hence,

v2 = (0, 1, 1)− 1

2
(1, 1, 0) = (−1/2, 1/2, 1).

Next, let

v3 = u3 −
〈u3, v1〉
〈v1, v1〉

v1 −
〈u3, v2〉
〈v2, v2〉

v2.

Note that 〈v2, v2〉 = 3/2, 〈u3, v1〉 = 1 and 〈u3, v2〉 = 1/2 Hence,

v3 = (1, 0, 1)− 1

2
(1, 1, 0)− 1

3
(−1/2, 1/2, 1) = (−2/3, 2/3,−2/3).

Thus,
{(1, 1, 0), (−1/2, 1/2, 1), (−2/3, 2/3,−2/3)}

is the Gram-Schmidt orthogonalization of {u1, u2, u3}.

EXAMPLE 3.11 Let V = P be with the the inner product

〈p, q〉 =

∫ 1

−1
p(t)q(t) dt, p, q ∈ V.

Let uj(t) = tj−1 for j = 1, 2, 3 and consider the linearly independent
set {u1, u2, u3} in V . Now let v1(t) = u1(t) = 1 for all t ∈ [−1, 1],
and let

v2 = u2 −
〈u2, v1〉
〈v1, v1〉

v1.

Note that

〈v1, v1〉 =

∫ 1

−1
v1(t)v1(t) dt =

∫ 1

−1
dt = 2,

〈u2, v1〉 =

∫ 1

−1
u2(t)v1(t) dt =

∫ 1

−1
t dt = 0.
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Hence, we have v2(t) = u2(t) = t for all t ∈ [−1, 1]. Next, let

v3 = u3 −
〈u3, v1〉
〈v1, v1〉

v1 −
〈u3, v2〉
〈v2, v2〉

v2.

Here,

〈u3, v1〉 =

∫ 1

−1
u3(t)v1(t) dt =

∫ 1

−1
t2 dt =

2

3
,

〈u3, v2〉 =

∫ 1

−1
u3(t)v2(t) dt =

∫ 1

−1
t3 dt = 0.

Hence, we have v3(t) = t2 − 1
3 for all t ∈ [−1, 1]. Thus,{
1, t, t2 − 1

3

}
is an orthogonal set of polynomials.

Definition 3.9 (Legendre polynomials) The polynomials

po(t), p1(t), p2(t) . . .

obtained by orthogonalizing 1, t, t2, . . . using the inner product

〈p, q〉 =

∫ 1

−1
p(t)q(t) dt, p, q ∈ P,

are called Legendre polynomials.

It is clear that the n-th Legendre polynomial pn(t) is of degree n.
We have seen in Example 3.11 that

p0(t) = 1, p1(t) = t, p2(t) = t2 − 1

3
.

3.7 Cauchy-Schwarz Inequality and Its
Consequences

Let us look at the arguments used in the construction of v2 from
u1, u2 in the proof of Theorem 3.13: Suppose x and y are two nonzero
vectors. Then we can write x as sum of two orthogonal elements,
namely, u and v, where

u =
〈x, y〉
〈y, y〉

y, v = x− 〈x, y〉
〈y, y〉

y.
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The vector u can be thought of as the projection of the vector x onto
the span of y. Using this argument we prove an important result,
called Cauchy-Schwarz inequality.

Theorem 3.15 (Cauchy-Schwarz inequality) Let V be an inner
product space, and x, y ∈ V . Then

|〈x, y〉| ≤ ‖x‖ ‖y‖.

Equality holds in the above inequality if and only if x and y are
linearly dependent.

Proof. The result is obvious if either x = 0 or y = 0. Hence,
assume that both x and y are nonzero vectors. As we have explained
in the preceding paragraph, let us write x = u+ v, where

u =
〈x, y〉
〈y, y〉

y, v = x− 〈x, y〉
〈y, y〉

y.

Then, by Pythagoras theorem,

‖x‖2 = ‖u‖2 + ‖v‖2 =
|〈x, y〉|2

|〈y, y〉|2
‖y‖2 + ‖v‖2 =

|〈x, y〉|2

‖y‖2
+ ‖v‖2.

Thus, |〈x, y〉| ≤ ‖x‖ ‖y‖. Equality holds in this inequality if and only

if v := x− 〈x,y〉〈y,y〉y = 0, i.e., if and only if x is a scalar multiple of y if

and only if x and y are linearly dependent.

As a corollary of the above theorem we have the following.

Corollary 3.16 (Triangle inequality) Suppose V is an inner prod-
uct space. Then for every x, y in V ,

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Proof. Let x, y ∈ V . Then, using the Cauchy-Schwarz inequality,
we obtain

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + ‖y‖2 + 2 Re 〈x, y〉
≤ ‖x‖2 + ‖y‖2 + 2 |〈x, y〉|
≤ ‖x‖2 + ‖y‖2 + 2 ‖x‖ ‖y‖
= (‖x‖+ ‖y‖)2.

Thus, ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for every x, y ∈ V .
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Exercise 3.7 Let V be an inner product space, and let x, y ∈ V .
Then, show the following:

(a) ‖x‖ ≥ 0.
(b) ‖x‖ = 0 iff x = 0.
(c) ‖αx‖ = |α| ‖x‖ for all α ∈ F..
(d) If ‖x+ y‖ = ‖x‖+ ‖y‖, then either y = 0 or x = αy for some

scalar α.
(e) ‖x+ αy‖ = ‖x− αy‖ ∀α ∈ F if and only if 〈x, y〉 = 0. �

Remark 3.1 For nonzero vectors x and y in an inner product space
V , by Schwarz inequality, we have

|〈x, y〉|
‖x‖‖y‖

≤ 1.

This relation motivates us to define the angle between any two nonzero
vectors x and y in V as

θx,y := cos−1

(
|〈x, y〉|
‖x‖ ‖y‖

)
.

Note that if x = cy for some nonzero scalar c, then θx,y = 0, and if
〈x, y〉 = 0, then θx,y = π/2.

Definition 3.10 Suppose V is a vector space. A function ν : V → R
is called a norm on V if it satisfies the following axioms:

(a) ν(x) ≥ 0 for all x ∈ V , and ν(x) = 0 iff x = 0,

(b) ν(x+ y) ≤ ν(x) + ν(y) for all x, y ∈ V , and

(c) ν(αx) = |α|ν(x) for all x ∈ V and for all α ∈ F.

Corollary 3.16 and Exercise 3.7 (a)-(c) shows that, in an inner
product space V , the function x 7→ ‖x‖ is a norm.

We have seen that, in an inner product space V , the norm ‖ · ‖
satisfies the parallelogram law. A natural question is whether every
norm ν on a vector space V satisfies parallelogram law:

ν2(x+ y) + ν2(x− y) = 2[ν2(x) + ν2(y)]

The answer is, in fact, negative. To see this consider the following
examples.
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EXAMPLE 3.12 Let V = R2. For x = (x1, x2) ∈ R2, define
ν(x) = |x1|+ x2|. Then it is easily seen that ν is a norm on R2. But
it does not satisfy the parallelogram law: Note that for x = e1 + e2

and y = e1 − e2,

ν(x+ y) = 2, ν(x− y) = 2, ν(x) = ν(y) = 2.

From these relations it follows that

ν2(x+ y) + ν2(x− y) = 8, but 2[ν2(x) + ν2(y)] = 16.

Thus, the above norm does not satisfy the parallelogram law.

EXAMPLE 3.13 For f ∈ C[0, 1], let

ν(f) =

∫ 1

0
|f(t)|dt.

Then it is easily seen that ν is a norm on C[0, 1]. But it does not
satisfy the parallelogram law: To see this consider

f(t) = t, g(t) = 1− t ∀ t ∈ [a, b].

Then we have

ν(f) = ν(g) = ν(f − g) =
1

2
, ν(f + g) = 1

From these relations it follows that ν does not satisfy the parallelo-
gram law.
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3.8 Best Approximation

In applications one may come across functions which are too com-
plicated to handle for computational purposes. In such cases, one
would like to replace them by functions of ”simpler forms” which
are easy to handle. This is often done by approximating the given
function by certain functions belonging to a finite dimensional space
spanned by functions of simple forms. For instance, one may want
to approximate a continuous function f defined on certain interval
[a, b] by a polynomial, say a polynomial p in Pn for some specified n.
It is desirable to find that polynomial p such that

‖f − p‖ ≤ ‖f − q‖ ∀ q ∈ Pn.

Here, ‖.‖ is a norm on C[a, b]. Now the question is whether such
a polynomial exists, and if exists, then is it unique; and if there is
a unique such polynomial, then how can we find it. These are the
issues that we discuss in this section, in an abstract frame work of
inner product spaces.

Definition 3.11 Let V be an inner product spaceand V0 be a sub-
space of V . Let x ∈ V . A vector x0 ∈ V0 is a called a best approx-
imation of x from V0 if

‖x− x0‖ ≤ ‖x− v‖ ∀ v ∈ V0.

Proposition 3.17 Let V be an inner product space , V0 be a subspace
of V , and x ∈ V . If x0 ∈ V0 is such that x − x0 ⊥ V0, then x0 is a
best approximation of x, and it is the unique best approximation of
x from V0.

Conversely, if x0 ∈ V0 is a best approximation of x, then x−x0 ⊥
V0.

Proof. Suppose x0 ∈ V0 is such that x−x0 ⊥ V0. Then, for every
u ∈ V0,

‖x− u‖2 = ‖(x− x0) + (x0 − u)‖2

= ‖x− x0‖2 + ‖x0 − u‖2.

Hence
‖x− x0‖ ≤ ‖x− v‖ ∀ v ∈ V0,

showing that x0 is a best approximation.
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To see the uniqueness, suppose that v0 ∈ V0 is another best ap-
proximation of x. Then, we have

‖x− x0‖ ≤ ‖x− v0‖ and ‖x− v0‖ ≤ ‖x− x0‖,

so that ‖x − x0‖ = ‖x − v0‖. Therefore, using the fact that
〈x− x0, x0 − v0〉 = 0, we have

‖x− v0‖2 = ‖x− x0‖2 + ‖x0 − v0‖2.

Hence, it follows that ‖x0 − v0‖ = 0. Thus v0 = x0.
Conversely, suppose that x0 ∈ V0 is a best approximation of x.

Then ‖x− x0‖ ≤ ‖x− u‖ for all u ∈ V0. In particular, if v ∈ V0,

‖x− x0‖ ≤ ‖x− (x0 + αv‖ ∀α ∈ F.

Hence, for every α ∈ F,

‖x− x0‖2 ≤ ‖x− (x0 + αv‖2

= 〈(x− x0) + αv, (x− x0) + αv〉
= ‖x− x0‖2 − 2Re〈x− x0, αv〉+ |α|2‖v‖2.

Taking α = 〈x− x0, v〉/‖v‖2, we have

〈x− x0, αv〉 =
|〈x− x0, v〉|2

‖v‖2
= |α|2‖v‖2

so that

‖x− x0‖2 ≤ ‖x− x0‖2 − 2Re〈x− x0, αv〉+ |α|2‖v‖2

= ‖x− x0‖2 −
|〈x− x0, v〉|
‖v‖2

.

Hence, 〈x− x0, v〉 = 0.

By the above proposition, in order to find a best approximation
of x ∈ V from V0, it is enough to find a vector x0 ∈ V0 such that
x− x0 ⊥ V0; and we know that such vector x0 is unique.

Theorem 3.18 Let V be an inner product space, V0 be a finite di-
mensional subspace of V , and x ∈ V . Let {u1, . . . , un} be an or-
thonormal basis of V0. Then for x ∈ V , the vector

x0 :=
n∑
i=1

〈x, ui〉ui

is the unique best approximation of x from V0.
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Proof. Clearly, x0 :=
∑n

i=1〈x, ui〉ui satisfies the hypothesis of
Proposition 3.17.

The above theorem shows how to find a best approximation from
a finite dimensional subspace V0, provided we know an orthonormal
basis of V0. Suppose we know only a basis of V0. Then, we can find
an orthonormal basis by Gram-Schmidt procedure. Another way to
find a best approximation is to use Proposition 3.17:

Suppose {v1, . . . , vn} is a basis of V0. By Proposition 3.17, the
vector x0 that we are looking for should satisfy 〈x− x0, vi〉 for every
i = 1, . . . , n. Thus, we have to find scalars α1, . . . , αn such that〈

x−
n∑
j=1

αjvj , vi

〉
= 0 ∀ i = 1, . . . , n.

That is to find α1, . . . , αn such that

n∑
j=1

〈vj , vi〉αj = 〈x, vi〉 ∀ i = 1, . . . , n.

The above system of equations is uniquely solvable (Why?) to get
α1, . . . , αn. Note that if the basis {v1, . . . , vn} is an orthonormal basis
basis of V0, then αj = 〈x, vj〉 for j = 1, . . . , n.

Exercise 3.8 Show that, if {v1, . . . , vn} is a linearly independent
subset of an inner product space V , then the columns of the matrix
M := (aij) with aij = 〈vj , vi〉, are linearly independent. Deduce
that, the matrix is invertible. �

EXAMPLE 3.14 Let V = R2 with usual inner product, and V0 =
{x = (x1, x2) ∈ R2 : x1 = x2}. Let us find the best approximation of
x = (0, 1) from V0.

We have to find a vector of the form x0 = (α, α) such that x−x0 =
(0, 1)− (α, α) = (−α, 1−α) is orthogonal to V0. Since V0 is spanned
by the single vector (1, 1), the requirement is to find α such that
(−α, 1− α) is orthogonal to (1, 1), i.e., α has to satisfy the equation
−α + (1 − α = 0, i.e., α = 1/2. Thus the best approximation of
x = (0, 1) from V0 is the vector x0 = (1/2, 1/2).

EXAMPLE 3.15 Let V be the vector space C[0, 1] over R with the
inner product: 〈x, u〉 =

∫ 1
0 x(t)u(t)dt, and let V0 = P1. Let us find

the best approximation of x define by x(t) = t2 from space V0.
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We have to find a vector x0 of the form x0(t) = a0 + a1t such
that the function x − x0 defined by (x − x0)(t) = t2 − a0 − a1t is
orthogonal to V0. Since V0 is spanned by u1, u2 where u1(t) = 1 and
u2(t) = t, the requirement is to find a0, a1 such that

〈x− x0, u1〉 =

∫ 1

0
(t2 − a0 − a1t)dt = 0,

〈x− x0, u2〉 =

∫ 1

0
(t3 − a0t− a1t

2)dt = 0.

That is∫ 1

0
(t2 − a0 − a1t)dt = [t3/3− a0t− a1t

2/2]10 = 1/3− a0 − a1/2 = 0,∫ 1

0
(t3−a0t−a1t

2)dt = [t4/4−a0t
2/2−a1t

3/3]10 = 1/4−a0/2−a1/3 = 0.

Hence, a0 = −1/6 and a1 = 1, so that the best approximation x0 of
t2 from P1 is given by x0(t) := −1/63 + t.

Exercise 3.9 Let V be an inner product space and V0 be a finite
dimensional subspace of V . Show that for every x ∈ V , there exists
a unique pair of vectors u, v with u ∈ V0 and v ∈ V ⊥0 satisfying
x = u+ v. In fact,

V = V0 + V ⊥0 . �

Exercise 3.10 Let V = C[0, 1] over R with inner product 〈x, u〉 =∫ 1
0 x(t)u(t)dt. Let V0 = P3. Find best approximation for x from V0,

where x(t) is given by
(i) et, (ii) sin t, (iii) cos t, (iv) t4. �

3.9 Best Approximate Solution

In this section we shall make use of the results from the previous
section to define and find a best approximate solution for an equation
Ax = y where A : V1 → V2 is a linear transformation between vector
spaces V1 and V2 with V2 being an inner product space.

Definition 3.12 Let V1 and V2 be vector spaces with V2 being an
inner product space, and let A : V1 → V2 be a linear transformation.
Let y ∈ V2. Then a vector x0 ∈ V1 is called a best approximate
solution or a least-square solution of the equation Ax = y if

‖Ax0 − y‖ ≤ ‖Au− y‖ ∀u ∈ V1.
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It is obvious that x0 ∈ V1 is a best approximate solution of Ax =
y if and only if y0 := Ax0 is a best approximation of y from the
range space R(A). Thus, from Proposition 3.17, we can conclude the
following.

Theorem 3.19 Let V1 and V2 be vector spaces with V2 being an
inner product space, and let A : V1 → V2 be a linear transformation.
If R(A) is a finite dimensional subspace of V2, then the equation
Ax = y has a best approximate solution. Moreover, a vector x0 ∈ V1

is a best approximate solution if and only if Ax0− y is orthogonal to
R(A).

Clearly, a best approximate solution is unique if and only if A is
injective.

Next suppose that A ∈ Rm×n, i.e., A is an m× n matrix of real
entries. Then we know that range space of A, viewing it as a linear
transformation from Rn to Rm, is the space spanned by the columns
of A. Suppose u1, . . . , un be the columns of A. Then, given y ∈ Rm,
a vector x0 ∈ Rn is a best approximate solution of Ax = y if and
only if Ax0− y is orthogonal to ui for i = 1, . . . , n, i.e., if and only if
uTi (Ax0−y) = 0 for i = 1, . . . , n, i.e., if and only if AT (Ax0−y) = 0,
i.e., if and only if

ATAx0 = AT y.

EXAMPLE 3.16 Let A =

[
1 1
0 0

]
and let y =

[
0
1

]
. Clearly, the

equation Ax = y has no solution. It can be seen that x0 =

[
1
−1

]
is a solution of the equation ATAx = AT y. Thus, x0 is a best
approximate solution of Ax = y.

3.10 QR-Factorization and Best Approximate
Solution

Suppose that A ∈ Rm×n, i.e., A is an m× n matrix of real entries
with n ≤ m. Assume that the columns of A are linearly independent.
Then we know that, if the equation Ax = y has a solution, then the
solution is unique. Now, let u1, . . . , un be the columns of A, and
let v1, . . . , vn are orthonormal vectors obtained by orthonormalizing
u1, . . . , un. Hence, we know that for each k ∈ {1, . . . , n},

span {u1, . . . , uk} = span {v1, . . . , vk}.
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Hence, there exists an upper triangular n×n matrix R := (aij) such
that uj = a1jv1 + a2jv2 + . . .+ anjvj , j = 1, . . . , n. Thus,

[u1, u2, . . . , un] = [v1, v2, . . . , vn]R.

Note that A = [u1, u2, . . . , un], and the matrix Q := [v1, v2, . . . , vn]
satisfies the relation

QTQ = I.

Definition 3.13 The factorization A = QR with columns of Q
being orthonormal and R being an upper triangular matrix is called
a QR-factorization of A.

We have see that if columns of A ∈ Rm×n are linearly indepen-
dent, then A has a QR-factorization.

Now, suppose that A ∈ Rm×n with columns of A are linearly
independent, and A = QR is the QR-factorization of A. Let y ∈ Rm.
Since columns of A are linearly independent, the equation Ax = y
has a unique best approximate solution, say x0. Then we know that

ATAx0 = AT y.

Using the QR-factorization A = QR of A, we have

RTQTQRx0 = RTQT y.

Now, QTQ = I, and RT is injective, so that it follows that

Rx0 = QT y.

Thus, if A = QR is the QR-factorization of A, then the best approx-
imate solution of Ax = y is obtained by solving the equation

Rx = QT y.

For more details on best approximate solution one may see
http://mat.iitm.ac.in/∼mtnair/LRN-Talk.pdf
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Error Bounds and Stability of
Linear Systems

4.1 Norms of Vectors and Matrices

Recall that a norm ‖ · ‖ on a vector space V is a function which
associates each x ∈ V a unique non-negative real number ‖x‖ such
that the following hold:

(a) For x ∈ V , ‖x‖ = 0 ⇐⇒ x = 0

(b) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ V ,

(c) ‖αx‖ = |α| ‖x‖ ∀α ∈ F, x ∈ V .

We have already seen that if V is an inner product space, then
the function x 7→ ‖x‖ := 〈x, x〉1/2 is a norm on V . It can be easily
sen that for x = (x1, x2, . . . , xk) ∈ Rk,

‖x‖1 :=

k∑
j=1

|xj |, ‖x‖∞ := max
1≤i≤k

|xi|

define norms on Rk. The norm induced by the standard inner prod-
uct on Rk is denoted by ‖ · ‖2, i.e.,

‖x‖2 :=
( k∑
j=1

|x(t)|2
)1/2

.

Exercise 4.1 Show that ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 for every x ∈ Rk.
Compute ‖x‖∞, ‖x‖2, ‖x‖1 for x = (1, 1, 1) ∈ R3.

We know that on C[a, b],

‖x‖2 := 〈x, x〉1/2 =
(∫ b

a
|x(t)|2dt

)1/2

74
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defines a norm. It is easy to show that

‖x‖1 :=

∫ b

a
|x(t)|dt ‖x‖∞ := max

a≤b
|x(t)|

also define norms on C[a, b].

Exercise 4.2 Show that there exists no constant c > 0 such that
‖x‖∞ ≤ c ‖x‖1 for all x ∈ C[a, b].

Next we consider norms of matrices. Considering an n×n matrix
as an element of Rn2

, we can obtain norms of matrices. Thus, ana-
logues to the norms ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞ on Rn, for A = (aij) ∈ Rn×n,
the quantities

n∑
i=1

n∑
j=1

|aij |,
( n∑
i=1

n∑
j=1

|aij |2
)1/2

, max
1≤i,j≤n

|aij |

define norms on Rn×n.

Given a vector norm ‖ · ‖ on Rn, it can be seen that

‖A‖ := sup
‖x‖≤1

‖Ax‖, A ∈ Rn×n,

defines a norm on the space Rn×n. Since this norm is associated with
the norm of the space Rn, and since a matrix can be considered as
a linear operator on Rn, the above norm on Rn×n is called a matrix
norm associated with a vector norm.

The above norm has certain important properties that other norms
may not have. For example, it can be seen that

• ‖Ax‖ ≤ ‖A‖ ‖x‖ ∀x ∈ Rn,

• ‖Ax‖ ≤ c ‖x‖ ∀x ∈ Rn ⇒ ‖A‖ ≤ c,.

Moreover, if A,B ∈ Rn×n and if I is the identity matrix, then

• ‖AB‖ ≤ ‖A‖ ‖B‖, ‖I‖ = 1.

Exercise 4.3 Let ‖·‖ be a norm on Rn and and A ∈ Rn×n. Suppose
c > 0 is such that ‖Ax‖ ≤ c ‖x‖ for all x ∈ Rn, and there exists x0 6= 0
in Rn such that ‖Ax0‖ = c ‖x0‖. Then show that ‖A‖ = c.
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In certain cases operator norm can be computed from the knowl-
edge of the entries of the matrix. Let us denote the matrix norm asso-
ciated with ‖·‖1 and ‖·‖∞ by the same notation, i.e., for p ∈ {1,∞},

‖A‖p := sup
‖x‖p≤1

‖Ax‖p, A ∈ Rn×n.

Theorem 4.1 If A = (aij) ∈ Rn×n, then

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |, ‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |.

Proof. Note that for x = (x1, . . . , xn) ∈ Rn,

‖Ax‖1 =
n∑
i=1

∣∣∣ n∑
j=1

aijxj

∣∣∣ ≤ n∑
i=1

n∑
j=1

|aij | |xj |

=
n∑
j=1

( n∑
i=1

|aij |
)
|xj | ≤

(
max

1≤j≤n

n∑
i=1

|aij |
) n∑
j=1

|xj |.

Thus, ‖A‖1 ≤ max1≤j≤n
∑n

i=1 |aij |. Also, note that ‖Aej‖1 =
∑n

i=1 |aij |
for every j ∈ {1, . . . , n} so that

∑n
i=1 |aij | ≤ ‖A‖1 for every j ∈

{1, . . . , n}. Hence, max1≤j≤n
∑n

i=1 |aij | ≤ ‖A‖1. Thus, we have
shown that

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |.

Next, consider the norm ‖ · ‖∞ on Rn. In this case, for x =
(x1, . . . , xn) ∈ Rn, we have

‖Ax‖∞ = max
1≤i≤n

∣∣∣ n∑
j=1

aijxj

∣∣∣.
Since ∣∣∣ n∑

j=1

aijxj

∣∣∣ ≤ n∑
j=1

|aij | |xj | ≤ ‖x‖∞
n∑
j=1

|aij |,

it follows that

‖Ax‖∞ ≤
(

max
1‘i≤n

n∑
j=1

|aij |
)
‖x‖∞.
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From this we have ‖A‖∞ ≤ max
1‘i≤n

n∑
j=1

|aij |. Now, let i0 ∈ {1, . . . , n}

be such that max
1≤i≤n

n∑
j=1

|aij | =
n∑
j=1

|ai0j |, and let x0 = (α1, . . . , αn) be

such that αj =

{
|ai0j |/ai0j if ai0j 6= 0,
0 if ai0j 6= 0.

Then ‖x0‖∞ = 1 and

n∑
j=1

|ai0j | =
∣∣∣ n∑
j=1

ai0jαj

∣∣∣ = |(Ax0)io | ≤ ‖Ax0‖∞ ≤ ‖A‖∞.

Thus, max
1≤i≤n

n∑
j=1

|aij | =
n∑
j=1

|ai0j | ≤ ‖A‖∞. Thus we have proved that

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |.

This completes the proof of the theorem.

What about the matrix norm

‖A‖2 := max
‖x‖≤1

‖Ax‖2, A ∈ Rn×n,

induced by ‖ · ‖2 on Rn? In fact, there is no simple representation
for this in terms of the entries of the matrix. However, we have the
following.

Theorem 4.2 Suppose A = (aij) ∈ Rn×n. Then

‖A‖2 ≤
( n∑
i=1

n∑
j=1

|aij |2
)1/2

.

If λ1, λ2, . . . , λn are the (non-negative) eigenvalues of the matrix
ATA, then

‖A‖2 = max
1≤≤n

√
λj .



78 Error Bounds and Stability of Linear Systems

Proof. Using the Cauchy-Schwarz inequality on Rn, we have, for
x = (x1, . . . , xn) ∈ Rn,

‖Ax‖22 =

n∑
i=1

∣∣∣ n∑
j=1

aijxj

∣∣∣2
≤

n∑
i=1

[( n∑
j=1

|aij |2
)( n∑

j=1

|xj |2
)]

≤
( n∑
i=1

n∑
j=1

|aij |2
)
‖x‖22.

Thus, ‖A‖2 ≤
( n∑
i=1

n∑
j=1

|aij |2
)1/2

.

Since ATA is a symmetric matrix, it has n real eigenvalues (may
be some of the are repeated) with corresponding orthonormal eigen-
vectors u1, un, . . . , un. Note that, for every j ∈ {1, 2, . . . , n},

λj = λj〈uj , uj〉 = 〈λjuj , uj〉 = 〈ATAuj , uj〉 = 〈Auj , Auj〉 = ‖Auj‖2

so that λj ’ s are non-negative, and |λj | ≤ ‖A‖ for all j. Thus,

max
1≤≤n

√
λj ≤ ‖A‖.

To see the reverse inequality, first we observe that u1, un, . . . , un form
an orthonormal basis of Rn. Hence, every x ∈ Rn can be written as
x =

∑n
j=1〈x, uj〉uj , so that

ATAx =

n∑
j=1

〈x, uj〉ATAuj =

n∑
j=1

〈x, uj〉λjuj .

Thus, we have ‖Ax‖2 = 〈Ax,Ax〉 = 〈ATAx, x〉 so that

‖Ax‖2 =

〈
n∑
j=1

〈x, uj〉λjuj ,
n∑
i=1

〈x, ui〉ui

〉

=
n∑
j=1

|〈x, uj〉|2λj

≤
(

max
1≤j≤n

λj

)
‖x‖2.

Hence, ‖A‖2 ≤ max1≤j≤n
√
λj . This completes the proof.
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Exercise 4.4 Find ‖A‖1, ‖A‖∞, for the matrix A =

 1 2 3
2 3 4
3 2 1

.

4.2 Error Bounds for System of Equations

Given an invertible matrix A ∈ Rn×n and b ∈ Rn, consider the
equation

Ax = b.

Suppose the data b is not known exactly, but a perturbed data b̃ is
known. Let x̃ ∈ Rn be the corresponding solution, i.e.,

Ax̃ = b̃.

Then, we have x− x̃ = A−1(b− b̃) so that

‖x− x̃‖ ≤ ‖A−1‖b− b̃‖ = ‖A−1‖b− b̃‖‖Ax‖
‖b‖

≤ ‖A‖ ‖A−1‖‖b− b̃‖
‖b‖

‖x‖,

‖b−b̃‖ ≤ ‖A‖ ‖x−x̃‖ = ‖A‖ ‖x−x̃‖‖A
−1b‖
‖x‖

≤ ‖A‖ ‖A−1‖‖x− x̃‖
‖x‖

‖b‖.

Thus, denoting the quantity ‖A‖ ‖A−1‖ by κ(A),

1

κ(A)

‖b− b̃‖
‖b‖

≤ ‖x− x̃‖
‖x‖

≤ κ(A)
‖b− b̃‖
‖b‖

. (4.1)

From the above inequalities, it can be inferred that if κ(A) is large,
then it can happen that for small relative error ‖b− b̃‖/‖b‖ in the
data, the relative error ‖x− x̃‖/‖x‖ in the solution may be large. In
fact, there do exist b, b̃ such that

‖x− x̃‖
‖x‖

= κ(A)
‖b− b̃‖
‖b‖

,

where x, x̃ are such that Ax = b and Ax̃ = b̃. To see this, let x0 and
u be vectors such that

‖Ax0‖ = ‖A‖ ‖x0‖, ‖A−1u‖ = ‖A−1‖ ‖u‖,

and let

b := Ax0, b̃ := b+ u, x̃ := x0 +A−1u.
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Then it follows that Ax̃ = b̃ and

‖x0 − x̃‖
‖x0‖

=
‖A−1u‖
‖x0‖

=
‖A−1‖ ‖u‖
‖x0‖

=
‖A‖ ‖A−1‖ ‖u‖
‖Ax0‖

= κ(A)
‖b− b̃‖
‖b‖

.

The quantity κ(A) := ‖A‖ ‖A−1‖ is called the condition num-
ber of the matrix A. To illustrate the observation in the preceding
paragraph, let us consider

A =

[
1 1 + ε

1− ε 1

]
, b =

[
b1
b2

]
.

It can be seen that

A−1 =
1

ε2

[
1 −1− ε

−1 + ε 1

]
so that x = A−1b = −1

ε

[
b1
b2

]
.

From this, it is clear that, if ε is small, then for small ‖b‖, ‖x‖ can
be very large. In this case, it can be seen that

‖A‖∞ = 2 + ε, ‖A−1‖∞ =
1

ε2
(2 = ε), κ(A) =

(2 + ε

ε

)2
>

4

ε2
.

In practice, while solving Ax = b by numerically, we obtain an
approximate solution x̃ in place of the actual solution. One would
like to know how much error incurred by this procedure. We can
have inference on this from (4.1), by taking b̃ := Ax̃.

Exercise 4.5 Let A ∈ Rn×n be an invertible matrix. Then there ex-
ist vectors x, u such that ‖Ax0‖ = ‖A‖ ‖x0‖ and ‖A−1u‖ = ‖A−1‖ ‖u‖
– Justify.

Exercise 4.6 1. Suppose A,B in Rn×n are invertible matrices,
and b, b̃ are in Rn. Let x, x̃ are in Rn be such that Ax = b and
Bx̃ = b̃. Show that

‖x− x̃‖
‖x‖

≤ ‖A‖ ‖B−1‖
(‖A−B‖
‖A‖

+
‖b− b̃‖
‖b‖

)
.

[Hint: Use the fact that B(x − x̃) = (B − A)x + (b − b̃), and
use the fact that ‖(B − A)x‖ ≤ ‖B − A‖ ‖x‖, and ‖b − b̃‖ =
‖b− b̃‖‖Ax‖/‖b‖ ≤ ‖b− b̃‖‖A‖ ‖x‖/‖b‖.]

2. Let B ∈ Rn×n. If ‖B‖ < 1, then show that I −B is invertible,
and ‖(I −B)−1‖ ≤ 1/(1− ‖B‖).
[Hint: Show that I − B is injective, by showing that for every
x, ‖(I −B)x‖ ≥ (1− ‖B‖)‖x‖, and then deduce the result.]
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3. Let A,B ∈ Rn×n be such that A is invertible, and ‖A− B‖ <
1/‖A−1‖. Then, show that, B is invertible, and

‖B−1‖ ≤ ‖A−1‖
1− ‖A−B‖ ‖A−1‖

.

[Hint: Observe that B = A − (A − B) = [I − (A − B)A−1]A,
and use the previous exercise.]

4. Let A,B ∈ Rn×n be such that A is invertible, and ‖A− B‖ <
1/2‖A−1‖. Let b, b̃, x, x̃ be as in Exercise 1. Then, show that,
B is invertible, and

‖x− x̃‖
‖x‖

≤ 2κ(A)
(‖A−B‖
‖A‖

+
‖b− b̃‖
‖b‖

)
.

[Hint: Apply conclusion in Exercise 3 to that in Exercise 1.]
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Additional Exercises

In the following V denotes a vector space over F which is R or C.

1. Let V be a vector space. For x, y ∈ V , show that x + y = x
implies y = θ.

2. Suppose that x ∈ V is a nonzero vector. Then show that
αx 6= βx for every α, β ∈ F with α 6= β.

3. Let R[a, b] be the set of all real valued Riemann integrable
functions on [a, b]. Show that R[a, b] is a vector space over R.

4. Let V be the set of all polynomials of degree 3. Is it a vector
space with respect to the usual addition and scalar multiplica-
tion?

5. Let S be a nonempty set, s0 ∈ S. Show that the set V of all
functions f : S → R such that f(s0) = 0 is a vector space
with respect to the usual addition and scalar multiplication of
functions.

6. Find a bijective linear transformation between Fn and Pn+1.

7. In each of the following, a set set is given and some operations
are defined. Check whether V is a vector space with these
operations:

(i) Let V = {x = (x1, x2) ∈ R2 : x2 = 0} with addition and
scalar multiplication as in R2.

(ii) Let V = {x = (x1, x2) ∈ R2 : 2x1 + 3x2 = 0} with addition
and scalar multiplication as in R2.

(iii) Let V = {x = (x1, x2) ∈ R2 : x1 + x2 = 1} with addition
and scalar multiplication as for R2.
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(iv) Let V = R2, F = R. For x = (x1, x2), y = (y1, y2), let
x+ y := (x1 + y1, x2 + y2) and for all α ∈ R,

αx :=

{
(0, 0) α = 0,
(αx1, x2/α), α 6= 0.

(v) Let V = C2, F = C. For x = (x1, x2), y = (y1, y2), let

x+y := (x1 +2y1, x2 +3y2) and αx := (αx1, αx2) ∀α ∈ C.

(vi) Let V = R2, F = R. For x = (x1, x2), y = (y1, y2), let

x+ y := (x1 + y1, x2 + y2) and αx := (x1, 0) ∀α ∈ R.

8. Let A ∈ Rn×n, O is the zero in Rn×1. Show that the set V0 of
of all n × 1 matrices X such that AX = O, is a subspace of
Rn×1.

9. Suppose V0 is a subspace of a vector space V , and V1 is a
subspace of V0. Then show that V1 is a subspace of V .

10. Give an example to show that union of two subspaces need not
be a subspace.

11. Let S be a subset of a vector space V . Show that S is a subspace
if and only if S = spanS.

12. Let V be a vector space. Show that the the following hold.

(i) Let S be a subset of V . Then spanS is the intersection of
all subspaces of V containing S.

(ii) Suppose V0 is a subspace of V and x0 ∈ V such that x0 6∈
V0. Then for every x ∈ span {x0;X0}, there exist a unique
α ∈ F, y ∈ V0 such that x = αx0 + y.

13. Show that

(a) Pn is a subspace of Pm for n ≤ m,

(b) C[a, b] is a subspace of R[a, b],

(c) Ck[a, b] is a subspace of C[a, b].
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14. For each λ in the open interval (0, 1), let uλ = (1, λ, λ2, . . .).
Show that uλ ∈ `1 for each ∈ (0, 1), and the set {uλ : 0 < λ <
1} is a linearly independent in `1. Infer that every basis of the
spaces c0, c, `∞ is an uncountable set.

15. Let A be an m×n matrix, and b be a column m-vector. Show
that the system Ax = b has a solution n-vector if and only if
b is in the span of columns of A.

16. Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). What is the span
of {e1 + e2, e2 + e3, e3 + e1}?

17. Let S be a subset of a vector space V . Show that S is a subspace
if and only if S = spanS.

18. Let V be a vector space. Show that the the following hold.

(i) Let S be a subset of V . Then

spanS =
⋂
{Y : Y is a subspace of V containing S}.

(ii) Suppose V0 is a subspace of V and x0 ∈ V \ V0. Then for
every x ∈ span {x0;X0}, there exist a unique α ∈ F, y ∈ V0

such that x = αx0 + y. �

19. Consider the system of equations

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2
. . . + . . . + . . . + . . . = . . .

am1x1 + am1x2 + . . . + amnxn = bm

Let

u1 :=


a11

a21

. . .
am1

 , u2 :=


a12

a22

. . .
am2

 , . . . , un :=


a1n

a2n

. . .
amn

 .
(a) Show that the above system has a solution vector x =
[x1, . . . , xn]T if and only if b = [b1, . . . , bn]T ∈ span({u1, . . . , un}.
(b) Show that the above system has atmost one solution vector
x = [x1, . . . , xn]T if and only if {u1, . . . , un} is linearly indepen-
dent.
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20. Show that every superset of a linearly dependent set is linearly
dependent, and every subset of a linearly independent set is
linearly independent.

21. Give an example to justify the following: E is a subset of vector
space such that there exists an vector u ∈ E which is not a
linear combination of other members of E, but E is linearly
dependent.

22. Is union (resp., intersection) of two linearly independent sets a
linearly independent?

23. Is union (resp., intersection) of two linearly dependent sets a
linearly dependent?

24. Show that vectors u = (a, c), v = (b, d) are linearly independent
in R2 iff ad− bc 6= 0.

25. Show that V0 := {x = (x1, x2, x3) : x1 + x2 + x3 = 0} is a
subspace of R3. Find a basis for V0.

26. Show that E := {1 + tn, t + tn, t2 + tn, . . . , tn−1 + tn, tn} is a
basis of Pn.

27. Let u1, . . . , un are linearly independent vectors in a vector space
V . Let [aij ] be an m× n matrix of scalar, and let

v1 := a11u1 + a21u2 + . . . + am1un
v2 := a12u1 + a22u2 + . . . + am2un
. . . . . . + . . . + . . . + . . .
vn := a1nu1 + a2nu2 + . . . + amnun.

Show that the v1, . . . , vm are linearly independent if and only
if the vectors

w1 :=


a11

a21

. . .
am1

 , w2 :=


a12

a22

. . .
am2

 , . . . , wn :=


a1n

am2

. . .
amn


are linearly independent. �

28. Let u1(t) = 1, and for j = 2, 3, . . . , let uj(t) = 1 + t+ . . .+ tj .
Show that span of {u1, . . . , un} is Pn, and span of {u1, u2, . . .}
is P.
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29. Let p1(t) = 1 + t + 3t2, p2(t) = 2 + 4t + t2, p3(t) = 2t + 5t2.
Are the polynomials p1, p2, p3 linearly independent? �

30. Show that a basis of a vector space is a minimal spanning set,
and maximal linearly independent set.

31. Suppose V1 and V2 are subspaces of a vector space V such that
V1 ∩ V2 = {0}. Show that every x ∈ V1 + V2 can be written
uniquely as x = x1 + x2 with x1 ∈ V1 and x2 ∈ V2.

32. Suppose V1 and V2 are subspaces of a vector space V . Show
that V1 + V2 = V1 if and only if V2 ⊆ V1.

33. Let V be a vector space.

(i) Show that a subset {u1, . . . , un} of V is linearly independent
if and only if the function (α1, . . . , αn) 7→ α1u1 + · · · + αnun
from Fn into V is injective.

(ii) Show that if E ⊆ V is linearly dependent in V , then every
superset of E is also linearly dependent.

(iii) Show that if E ⊆ V is linearly independent in V , then
every subset of E is also linearly independent.

(iv) Show that if {u1, . . . , un} is a linearly independent subset
of V , and if Y is a subspace of V such that (span {u1, . . . , un})∩
Y = {0}, then every V in the span of {u1, . . . , un, Y } can be
written uniquely as x = α1u1+· · ·+αnun+y with (α1, . . . , αn) ∈
Fn, y ∈ Y .

(v) Show that if E1 and E2 are linearly independent subsets
of V such that (spanE1) ∩ (spanE2) = {0}, then E1 ∪ E2 is
linearly independent.

34. For each k ∈ N, let Fk denotes the set of all column k-vectors,
i.e., the set of all k× 1 matrices. Let A be an m× n matrix of
scalars with columns a1, a2, . . . , an. Show the following:

(i) The equation Ax = 0 has a non-zero solution if and only if
a1, a2, . . . , an are linearly dependent.

(ii) For y ∈ Fm, the equation Ax = y has a solution if and only
if a1, a2, . . . , an, y are linearly dependent, i.e., if and only if y is
in the span of columns of A.
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35. For i = 1, . . . ,m; j = 1, . . . , n, let Eij be the m×n matrix with
its (i, j)-th entry as 1 and all other entries 0. Show that

{Eij : i = 1 . . . ,m; j = 1, . . . , n}

is a basis of Fm×n.

36. If {u1, . . . , un} is a basis of a vector space V , then show that
every x ∈ V , can be expressed uniquely as x = α1u1+· · ·+αnun;
i.e., for every x ∈ V , there exists a unique n-tuple (α1, . . . , αn)
of scalars such that x = α1u1 + · · ·+ αnun.

37. Suppose S is a set consisting of n elements and V is the set of
all real valued functions defined on S. Show that V is a vector
space of dimension n.

38. Let t0, t1, . . . , tn be in [a, b] such that a = t0 < t1 < . . . <
tn = b. For k ∈ N, let Xk,n be the set of all those functions
x ∈ C([a, b],R) such that the restriction of x to each interval
[tj−1, tj ] is a polynomial of degree atmost k. Then show that
Xk,n is a linear space over R. What is the dimension of Xk,n?

39. Given real numbers a0, a1, . . . , ak, let X be the set of all solu-
tions x ∈ Ck[a, b] of the differential equation

a0
dkx

dtk
+ a1

dk−1x

dtk−1
+ · · ·+ akx = 0.

Show that X is a linear space over R. What is the dimension
of X?

40. Let t0, t1, . . . , tn be in [a, b] such that a = t0 < t1 < . . . < tn =
b. For each j ∈ {1, . . . , n}, let uj be in C([a, b],R) such that

uj(ti) =

{
1 if i = j

0 if i 6= j,

and the restriction of uj to each interval [tj−1, tj ] is a polyno-
mial of degree atmost 1. Show that the span of {u1, . . . , un} is
the space X1,n in Problem 38.

41. The spaces c00, c0, `
1, `∞,P, C[a, b],R[a, b] are all infinite di-

mensional spaces – Why?
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42. State with reason whether T : R2 → R2 in each of the following
is a linear transformation:

(a) T (x1, x2) = (1, x2), (b) T (x1, x2) = (x1, x
2
2)

(c) T (x1, x2) = (sin(x1), x2) (d) T (x1, x2) = (x1, 2 + x2)

43. Check whether the functions T in the following are linear trans-
formations:

(i) T : R2 → R2 defined by T (x, y) = (2x+ y, x+ y2).

(ii) T : C1[0, 1]→ R defined by T (u) =
∫ 1

0 [u(t)]2dt.

(iii) T : C1[−1, 1]→ R2 defined by T (u) =
(∫ 1
−1 u(t)dt, u′(0)

)
.

(iii) T : C1[0, 1]→ R defined by T (u) =
∫ 1

0 u
′(t)dt.

44. Let T1 : V1 → V2 and T2 : V2 → V3 be linear transformations.
Show that the function T : V1 → V3 defined by Tx = T2(T1x),
x ∈ V1, is a linear transformation.

[The above transformation T is called the composition of T2

and T1, and is usually denoted by T2T1.]

45. If T1 : C1[0, 1] → C[0, 1] is defined by T1(u) = u′, and T2 :
C[0, 1]→ R is defined by T2(v) =

∫ 1
0 v(t)dt, then find T2T1.

46. Let V1, V2, V3 be finite dimensional vector spaces, and let E1,
E2, E3 be bases of V1, V2, V3 respectively. If T1 : V1 → V2

and T2 : V2 → V3 are linear transformations. Show that
[T2T1]E1,E3 = [T2]E2,E3 [T1]E1,E2 .

47. If T1 : Pn[0, 1] → Pn[0, 1] is defined by T1(u) = u′, and T2 :
Pn[0, 1]→ R is defined by T2(v) =

∫ 1
0 v(t)dt, then find [T1]E1,E2 ,

[T2]E2,E3 , and [T2T1]E1,E3 , where E1 = E2 = {1, t, t2, . . . , tn}
and E3 = {1}.

48. Justify the statement: Let T1 : V1 → V2 be a linear transforma-
tion. Then T is bijective iff there exists a linear transformation
T2 : V2 → V1 such that T1T2 : V2 → V2 is the identity transfor-
mation on V2 and T2T1 : V1 → V1 is the identity transformation
on V1.

49. Let V1 and V2 be vector spaces with dimV1 = n < ∞. Let
{u1, . . . , un} be a basis of V1 and {v1, . . . , vn} ⊂ V2. Find a
linear transformation T : V1 → V2 such that T (uj) = vj for
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j = 1, . . . , n. Show that there is only one such linear transfor-
mation.

50. Let T be the linear transformation obtained as in the above
problem. Show that

(a) T is one-one if and only if {v1, . . . , vn} is linearly indepen-
dent, and

(b) T is onto if and only if span ({v1, . . . , vn}) = V2.

51. Let T : R2 → R2 be the linear transformation which satisfies
T (1, 0) = (1, 4) and T (1, 1) = (2, 5). Find the T (2, 3).

52. Does there exists a linear transformation T : R3 → R2 such
that T (1, 0, 2) = ((1, 1) and T (1/2, 0, 1) = ((0, 1) ?

53. Show that if V1 and V2 are finite dimensional vector spaces
of the same dimension, then the there exists a bijective linear
transformation from V1 to V2.

54. Find bases for N(T ) and R(T ) for the linear transformation T
in each the following:

(a) T : R2 → R2 defined by T (x1, x2) = (x1 − x2, 2x2),

(b) T : R2 → R3 defined by T (x1, x2) = (x1 + x2, 0, 2x3 − x2),

(c) T : Rn×n → R defined by T (A) = trace(A). (Recall that
trace of a square matrix is the sum of its diagonal elements.)

55. Let T : V1 → V2 is a linear transformation. Given reasons for
the following:

(a) rank(T ) ≤ dimV1.

(b) T onto implies dimV2 ≤ dimV1,

(c) T one-one implies dimV1 ≤ dimV2

(d) Suppose dimV1 = dimV2 < ∞. Then T is one-one if and
only T is onto.

56. Let V1 and V2 be finite dimensional vector spaces, and E1 =
{u1, . . . , un} and E2 = {v1, . . . , vm} be bases of V1 and V2,
respectively. Let F1 = {f1, . . . , fn} be the dual basis of L(V1,F)
with respect to E1 and F2 = {g1, . . . , gn} be the dual basis of
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L(V2,F) with respect to E2. For i = 1, . . . , n; j = 1, . . . ,m, let
Tij : V →W defined by

Tij(x) = fj(x)vi, x ∈ V1.

Show that {Tij : i = 1, . . . , n; j = 1, . . . ,m} is a basis of
L(V1, V2).

57. Let T : R3 → R3 be defined by

T (x1, x2, x3) = (x2 + x3, x3 + x1, x1 + x2), (x1, x2, x3) ∈ R3.

Find the matrix representation of T with respect to the basis
given in each of the following.

(a) E1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, E2 = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}
(b) E1 = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}, E2 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
(c) E1 = {(1, 1,−1), (−1, 1, 1), (1,−1, 1)},
E2 = {(−1, 1, 1), (1,−1, 1), (1, 1,−1)

58. Let T : P3 → P2 be defined by T (a0 + a1t + a2t
2 + a3t

3) =
a1 + 2a2t + 3a3t

2. Find the matrix representation of T with
respect to the basis given in each of the following.

(a) E1 = {1, t, t2, t3}, E2 = {1 + t, 1− t, t2}
(b) E1 = {1, 1 + t, 1 + t+ t2, t3}, E2 = {1, 1 + t, 1 + t+ t2}
(c) E1 = {1, 1 + t, 1 + t+ t2, 1 + t+ t2 + t3}, E2 = {t2, t, 1}

59. Let T : P2 → P3 be defined by T (a0 + a1t + a2t
2) = (a0t +

a1
2 t

2 + a2
3 t

3). Find the matrix representation of T with respect
to the basis given in each of the following.

(a) E1 = {1 + t, 1− t, t2}, E2 = {1, t, t2, t3},
(b)E1 = {1, 1 + t, 1 + t+ t2}, E2 = {1, 1 + t, 1 + t+ t2, t3},
(c) E1 = {t2, t, 1}, E2 = {1, 1 + t, 1 + t+ t2, 1 + t+ t2 + t3},

60. A linear transformation T : V →W is said to be of finite rank
if rankT <∞.

Let T : V1 → V2 be a linear transformation between vector
spaces V1 and V2. Show that T is of finite rank if and only
if there exists n ∈ N, {v1, . . . , vn} ⊂ V2 and {f1, . . . , fn} ⊂
L(V1,F) such that Ax =

∑n
j=1 fj(x)vj for all x ∈ V1. �
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61. Let V1 and V2 be inner product spaces with inner products
〈·, ·〉1 and 〈·, ·〉2 respectively. One V = V1 × V2, define

〈(x1, x2), (y1, y2)〉V := 〈x1, y1〉1+〈x2, y2〉2, ∀ (x1, x2), (y1, y2) ∈ V.

Show that 〈·, ·〉V is an inner product on V .

62. Let 〈·, ·〉1 and 〈·, ·〉2 are inner products on a vector space V .
Show that 〈x, y〉 := 〈x, y〉1 + 〈x, y〉2 defines another inner prod-
uct on V .

63. For x, y in an inner product space V , show that (x+y) ⊥ (x−y)
if and only if ‖x‖ = ‖y‖.

64. Let V be an inner product space. For S ⊂ V , let

S⊥ := {x ∈ V : 〈x, u〉 = 0 ∀u ∈ S}.

Show that

(a) S⊥ is a subspace of V .

(b) V ⊥ = {0}, {0}⊥ = V .

(c) S ⊂ S⊥⊥.

(d) If V is finite dimensional and V0 is a subspace of V , then
V ⊥⊥0 = V0.

65. Find the best approximation of x ∈ V from V0 where

(a) V = R3, x := (1, 2, 1), V0 := span {(3, 1, 2), 1, 0, 1)}.

(b) V = R3, x := (1, 2, 1), and V0 is the set of all (α1, α2, α3)
in R4 such that α1 + α2 + α3 = 0}.

(c) V = R4, x := (1, 0,−1, 1) V0 := span {(1, 0,−1, 1), (0, 0, 1, 1)}.

(d) V = C[−1, 1], x(t) = et, V0 = P3.

66. Let A ∈ Rm×n and y ∈ Rm. Show that, there exists x ∈ Rn
such that ‖Ax − y‖ ≤ ‖Au = y‖ for all u ∈ Rn, if and only if
ATAx = AT y.

67. Let A ∈ Rm×n and y ∈ Rm. If columns of A are linearly
independent, then show that there exists a unique x ∈ Rn such
that ATAx = AT y.
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68. Find the best approximate solution (least square solution) for
the system Ax = y in each of the following:

(a) A =

 3 1
1 2
2 −1

; y =

 1
0
−2

.

(b) A =


1 1 1
−1 0 1

1 −1 0
0 1 −1

; y =


0
1
−1
−2

.

69. Show that ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 for every x ∈ Rk.
Find c1, c2, c3, c4 > 0 such that

c1‖x‖2 ≤ ‖x‖∞ ≤ c2‖x‖2, c3‖x‖1 ≤ ‖x‖1 ≤ c4‖x‖∞ ∀x ∈ Rk.

Compute ‖x‖∞, ‖x‖2, ‖x‖1 for x = (1, 1, 1) ∈ R3.

70. Show that there exists no constant c > 0 such that ‖x‖∞ ≤
c ‖x‖1 for all x ∈ C[a, b].

71. Let ‖ · ‖ be a norm on Rn and and A ∈ Rn×n. Suppose c > 0 is
such that ‖Ax‖ ≤ c ‖x‖ for all x ∈ Rn, and there exists x0 6= 0
in Rn such that ‖Ax0‖ = c ‖x0‖. Then show that ‖A‖ = c.

72. Find ‖A‖1, ‖A‖∞, for the matrix A =

 1 2 3
2 3 4
3 2 1

.

73. Suppose A,B in Rn×n are invertible matrices, and b, b̃ are in
Rn. Let x, x̃ are in Rn be such that Ax = b and Bx̃ = b̃. Show
that

‖x− x̃‖
‖x‖

≤ ‖A‖ ‖B−1‖
(‖A−B‖
‖A‖

+
‖b− b̃‖
‖b‖

)
.

[Hint: Use the fact that B(x − x̃) = (B − A)x + (b − b̃), and
use the fact that ‖(B − A)x‖ ≤ ‖B − A‖ ‖x‖, and ‖b − b̃‖ =
‖b− b̃‖‖Ax‖/‖b‖ ≤ ‖b− b̃‖‖A‖ ‖x‖/‖b‖.]

74. Let B ∈ Rn×n. If ‖B‖ < 1, then show that I −B is invertible,
and ‖(I −B)−1‖ ≤ 1/(1− ‖B‖).
[Hint: Show that I − B is injective, by showing that for every
x, ‖(I −B)x‖ ≥ (1− ‖B‖)‖x‖, and then deduce the result.]
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75. Let A,B ∈ Rn×n be such that A is invertible, and ‖A− B‖ <
1/‖A−1‖. Then, show that, B is invertible, and

‖B−1‖ ≤ ‖A−1‖
1− ‖A−B‖ ‖A−1‖

.

[Hint: Observe that B = A − (A − B) = [I − (A − B)A−1]A,
and use the previous problem.]

76. Let A,B ∈ Rn×n be such that A is invertible, and ‖A− B‖ <
1/2‖A−1‖. Let b, b̃, x, x̃ be as in Problem 73. Then, show that,
B is invertible, and

‖x− x̃‖
‖x‖

≤ 2κ(A)
(‖A−B‖
‖A‖

+
‖b− b̃‖
‖b‖

)
.

[Hint: Apply conclusion in Problem 75 to that in Problem 73]

77. Suppose u1, . . . , un are functions defined on [a, b], and t1, . . . , tn
are points in [a, b]. Let β1, . . . , βn are real numbers. Then
show that there exists a unique ϕ ∈ span {u1, . . . , un} satisfying
ϕ(ti) = βi for i = 1, . . . , n if and only if the matrix [uj(ti)] is
invertible.

78. Suppose u1, . . . , un are functions defined on [a, b], and t1, . . . , tn
are points in [a, b]. Show that, if the matrix [uj(ti)] is invertible,
then u1, . . . , un are linearly independent.

Hint: A square matrix is invertible if and only if its columns
are linearly independent.

79. Suppose u1, . . . , un are functions defined on [a, b], and t1, . . . , tn
are points in [a, b] such that the matrix [uj(ti)] is invertible. If
v1, . . . , vn are linearly independent functions in span {u1, . . . , un},
then show that the matrix [vj(ti)] is also invertible.

Hint: Let X0 := span {u1, . . . , un} and [uj(ti)] is invertible.
Then observe that, the function J : X0 → Rn defined by J(x) =
[x(t1), . . . , x(tn]T is bijective.

80. Let t1, . . . , tn be distinct points in R, and for each j ∈ {1, 2, . . . , n},
let `j(t) =

∏
i 6=j

t−ti
tj−ti . Then show that {`1, . . . , `n} is a basis of

Pn−1, and it satisfies `j(ti) = δij for all i, j = 1, . . . , n. Deduce
from the previous exercise that the matrix [ti−1

j ] is invertible.


