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Preface

This is based on an elective course that the author gave to B.Tech.
students of IIT Madras two times (2003-2004). During the prepa-
ration of these notes, the author benefitted from the interactions
that he had with two of his colleagues, Professor S.H.Kulkarni and
Professor Arindama Singh who were also co-teachers for the courses.

The aim of the course is to introduce basics of Linear Algebra
and some topics in Numerical Linear Algebra and their applications.

December 2003 M. T. Nair

Present Edition

The present edition is meant for the course MA2031: ”Linear
Algebra for Engineers”, prepared by omitting two chapters related to
numerical analysis. Also, the title is changed from “A Short Course
on Linear Algebra and its Applications” to A Short Course on Linear
Algebra.

January, 2020 M. T. Nair
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Vector Spaces

1.1 Motivation

The notion of a vector space is an abstraction of the familiar set of
vectors in two or three dimensional Euclidian space. For example, let
Z = (z1,22) and ¥ = (y1,%2) be two vectors in the plane R?. Then
we have the notion of addition of these vectors so as to get a new
vector denoted by ¥ + ¢, and it is defined by

T+y= (14 y1,22+ y2).

This addition has an obvious geometric meaning: If O is the coordi-
nate origin, and if P and @ are points in R? representing the vectors
Z and ¥ respectively, then the vector & + ¢ is represented by a point
R in such way that OR is the diagonal of the parallelogram for which
OP and OQ) are adjacent sides.

Also, if « is a positive real number, then the multiplication of &
by « is defined by

af = (ary, axs).

Geometrically, the vector o is an elongated or contracted form of
Z in the direction of Z. Similarly, we can define af with a nega-
tive real number «, so that a& represents in the negative direction.
Representing the coordinate-origin by 0, and —& := (—1)Z, we see
that

i4+0=2  Z+ (%) =0.
We may denote the sum & + (—%) by Z — .

Now, abstracting the above properties of vectors in the plane, we
define the notion of a vector space.

We shall denote by F the field of real numbers or the field of
complex numbers. If special emphasis is required, then the fields
of real numbers and complex numbers will be denoted by R and C,
respectively.
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1.2 Definition and Some Basic Properties

Definition 1.1 (Vector space) A wvector space over F is a set V
together with two operations called (i) addition which associates each
pair (x,y) of elements in V' a unique element in V' denoted by = + v,
and (ii) scalar multiplication which associates each pair («,z) with
a € F and z € V, a unique element in V denoted by az, so that
these operations satisfy the following axioms:

(a) z+y=y+x Vz,yeV.
b) (z4+y)+z=x+y+2) YVa,y,zeV.
c) d30eVsuchthatx+60=2 VaxecV.
d) VxzeV,3% eV such that x +7 = 0.
alz+y)=ar+ay VaeF Vr,yeV.
(a+B)r=ax+px Va,f €F,VreV.
g) (af)r=a(fzr) Va,feF VrxeV.
h) lx=z VzeV.

Elements of a vector space are called vectors, and elements of
the field F (over which the vector space is defined) are often called
scalars.

Proposition 1.1 Let V' be a vector space, and 01 and 02 in V be
such that
r+60=x and x+0=x VreX.

Then 61 = 6.
Proof. Using the hypothesis and axioms (a) and (c), we have
Oy =02+ 61 =01+ 6 =0.
This completes the proof. I

By the above proposition, we can assert that there is exactly one
element § € V such that z + 0 =V forall x € V.

Definition 1.2 (zero element) Let V be a vector space. The
unique element 6 € V such that x + 0 = x for all € V is called the
zero element or simply, the zero in V.
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Notation: The zero element in a vector space as well as the zero in
the scalar field are often denoted by the same symbol 0.

Exercise 1.1 Let V be a vector space. For x,y € V, show that
r+y=ximpliesy=60. ¢

Proposition 1.2 Let V' be a vector space. For x € V, let 2’ and x”
be in V such that

x+2' =60 and xz+2"=86.
Then ' = z".

Proof. By hypothesis and using the axioms (a), (b), (c), it follows
that

" "

=2 +0=d"+(x+2")=0"+2)+2"=0+2" =2".
This completes the proof. I

The above proposition shows that, for every z € V, there exists
only one element & € V such that z +z = 6.

Definition 1.3 (additive inverse) Let V be a vector space. For
each x € V, the unique element £ € V' such that x + & = 6 is called
the additive inverse of x.

Notation: For x in a vector space, the unique element & which
satisfies  + & = 6 is denoted by —z.

Proposition 1.3 Let V' be a vector space. Then, for all z € V,
Oz =0 and (—1)z=—=x.

Proof. Let x € V. Since 0x = (0 + 0)z = Oz + Oz, it follows that
O0x = 6. Thus, (i) is proved. Now, x4+ (—1)z = [1+(—-1)]Jz = 0.z =6
so that, by the uniqueness of the additive inverse of x, it follows that
(-Dz=—-z. 1

Notation: For z,y in a vector space, the expression x + (—y) is
denoted by x — y.

We observe that a vector space V, by definition, cannot be an
empty set. It contains at least one element, viz., the zero element.
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If a vector space V' contains at least one nonzero element, then it
contains infinitely many nonzero elements: If x is a nonzero element
in V, and if a, 3 are scalars such that o # (3, then ax # [z (see
Exercise 1.2 below). This is a consequence of axiom (h).

Exercise 1.2 Show that, if z € V and =z # 0, then ax # pz for
every o, B € F with a # 3. ¢

Unless otherwise specified, we always assume that the vector
space under discussion is non-trivial , i.e., it contains at least one
nonzero element.

1.3 Examples of Vector Spaces

EXAMPLE 1.1 (Space F") Consider the set F" of all n—tuples
of scalars, i.e.,

F' . ={z=(a1,...,an) s €F,i=1,...,n}.
For x = (aq,...,an), y = (B1,...,0n) in F" and « € F, define the
addition and scalar multiplication coordinate-wise as
z+y=(a1+P01,...,an+ ), ax=(aq,...,aua).

Then it can be seen that F” is a vector space with zero element
6 := (0,...,0) and additive inverse of z = (a,...,q,) as —x =
(—a, ..., —ay).

EXAMPLE 1.2 (Space P,) For n € {0,1,2,...}, let P, be the

set of all polynomials of degree at most n, with coefficients in F, i.e.,
x € Py, if and only if x is of the form

r=ag+ait+...+a,t"

for some scalars ag,aq ...,a,. Then P, is a vector space with addi-
tion and scalar multiplication defined as follows:
For z = ag+ a1t +...ant", y = bg+ b1t + ...+ b,t"™ in P, and
a€el,
r 4y = (ap+bo) + (a1 + b))t + ...+ (an + by)t",
ar = aag + aart + ...+ aapt”.

The zero polynomial, i.e., the polynomial with all its coefficients zero,
is the zero element of the space, and

-z =—agp—ait —...—ayt"™.
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EXAMPLE 1.3 (Space P) Let P be the set of all polynomials
with coefficients in F, i.e., x € P if and only if x € P, for some
n € {0,1,2,...}. For z,y € P, let n,m be such that z € P, and
Yy € Pp. Then we have z,y € Py, where k = max {n,m}. Hence we
can define x + y and ax for a € F as in P;,. With this addition and
scalar multiplication, it follows that P is a vector space.

EXAMPLE 1.4 (Space F™*™) Let V = F"™*" be the set of all
m X n matrices with entries in F. If A is a matrix with its ij-th
entry a;;, then we shall write A = [a;;]. It is seen that V is a vector

space with respect to the addition and scalar multiplication defined
as follows: For A = [a;], B = [b;j] in V, and o € F,

A+ B = [ai; + byjl, aA = [aag;).

In this space, —A = [—a;;|, and the matrix with all its entries are
zeroes is the zero element.

EXAMPLE 1.5 (Space F¥) This example is a special case of the
last one. For ecach k € N, let F¥ denotes the set of all column k-
vectors, i.e., the set of all k£ x 1 matrices. Obviously, F* is a vector
space over [F. This vector space is in one-one correspondence with
F*. One such correspondence is given by T : F¥ — F¥ defined by

X1
x

T((z1,...,2)) = 2 , (ml,...,xk)GFk.
Tk

EXAMPLE 1.6 (Sequence space) Let V be the set of all scalar
sequences. For (ay,) and (3,) in V, and « € F, we define

() + (Bn) = (an + Bn),  alan) = (aan).

With this addition and scalar multiplication, V is a vector space with
its zero element as the sequence of zeroes, and —(a,) = (—ay,).

Exercise 1.3 Verify that the sets considered in Examples 1.1 — 1.6
are indeed vector spaces with respect to the operations defined there.

¢

For the next example the reader may recall the definition of a
real valued continuous function: A function z : Q — R, i.e., a real
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valued function function x defined on a subset €2 of R, is said to be
continuous at a point sg € €2, if for every given € > 0, it is possible
to find a § > 0, which may depend on sy as well as €, such that

s€Q, |s—so| <d = |z(s) —x(s0)| <e.

EXAMPLE 1.7 (Space C(2)) Let Q be a subset of R and C(2)
be the set of all real valued continuous functions defined on 2. For
z,y € C(N) and o € F, we define = + y and ax point-wise, i.e.,

(z+y)t) =2@) +yt), (azx)t)=azxl), te.

Then it can be shown that x + y,ax € C(Q2), and C(2) is a vector
space over R with zero element as the zero function, and additive in-
verse of z € C(Q) as the function —x defined by (—x)(t) = —z(t), t €
Q.

NOTATION. If Q = [a, b], we shall denote the space C(Q2) by C|a, b].
In case we want to emphasis the scalar field is R, then we shall write
C([a,b],R) in place of Cla, b].

EXAMPLE 1.8 (Space R[a,b]) Let R[a,b] be the set of all real
valued Riemann integrable functions on [a,b]. From the theory of
Riemann integration, it follows that if z,y € R[a,b] and o € F, then
x +y and ax defined pointwise belongs to R[a,b]. It is seen that
(Verify) Rla,b] is a vector space over R.

EXAMPLE 1.9 (Function space F(2,IF)) Let 2 be a nonempty
set and F(€2,F) be the set of all functions from  into F. For z, y €
F(Q,F) and o € F, let « + y and ax be defined point-wise, i.e.,

(x+y)(s) =z(s) +y(s), (ax)(s)=azx(s), secll.

Let —x and 0 be defined by

Then it is easy to see that F(€,F) is a vector space over F.

For showing that F(€2,F) is a vector space, what one essentially
requires is the linear structure on F. Thus, in a similar fashion we
can show that if W is a vector space, then F(€, W), the set of all
functions from €2 into W, is a vector space.
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Consider the following particular cases of the above example.
(a) Let Q ={1,...,n}. Then it can be seen that the function
T : F(S,F) — F" defined by

T(@) = (#(1),...,2(n)), € X,
is bijective. We also see that for every z,y in F(S,F) and a € F,
T(x+y)=T(x)+T(y), T(azx)=aoT(z).

Such a map is called a linear transformation or a linear operator.
Linear transformations will be considered in more detail in the next
chapter. Here we give only its definition.

Definition 1.4 Let V and W be vector spaces. Then a function
T : X — W iscalled a linear transformation or a linear operator
if

Tx+y)=T(x)+T(y) and T(ax)=aT(x)
for every z,y € V and « € F.

A Dbijective linear transformation is sometimes called a linear
isomorphism. Thus, if there is a linear isomorphism 7" : V — W
between vector spaces V and W, then as far as their linear structures
are concerned, they are indistinguishable. Hence we may regard them
same, up to a linear isomorphism. Thus, if Q@ = {1,...,n}, then the
vector spaces F(§2,F) and F” can be considered as same. With this
identification in mind, we shall denote the j-th entry of an element
x=(ay,...,ay) of F" by x(j) for j =1,...,n.

Similarly, if 2 is a set with n elements, say 2 = {s1,...,s,}, then
F(Q,TF) can be identified with F” by the map

x> (x(s1),...,2(sn)), x€F(Q,F).
(b) Next suppose 2 = N, the set of all positive integers. Then

F(Q,TF) can be identified with the set of all scalar sequences. The
identification is given by

x— (z(1),2(2),...), =€ FN,F).

With this identification, the n—th entry «,, of a scalar sequence z =
() is also denoted by z(n).
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Similarly, if © is a denumerable set, say S = {si1, s2,...}, then
F(S,F) can be identified with the set of all scalar sequences by the
map

x> (x(s1),2(s2),...), x€F(QTF).

(c) Consider Q@ = {1,...,m} x {1,...,n}. Then the resulting
vector space F (€2, F) is in one—one correspondence with the set "
of all m x n matrices with entries in F. The bijective map, in this
case, is

= [2(i, )],

where [z(7, j)] is the m x n matrix whose ij—th entry is x(i, j).

Exercise 1.4 Show that the maps considered in (a), (b) and (c)
above are linear transformations. ¢

Exercise 1.5 Verify that the sets considered in Examples 1.7 — 1.9
are indeed vector spaces with respect to the operations defined there.

¢

Exercise 1.6 Find a bijective linear transformation between F” and

Pn—l- ’

EXAMPLE 1.10 Let J be an interval and P,(J) be the set of all
polynomials of degree at most n considered as functions on J. Thus,
x € Pp(J) if and only x : J — F and there exist scalars ag, a1, ..., a,
such that

z(t) =ao+art+...+apt", te.d

Then as in Example 1.2, P, (J) is a vector space.

EXAMPLE 1.11 Let J be an interval and P(J) = U5 Pp(J).
Then as in Example 1.3, P(J) is a vector space.

NOTATION :1If J = [a,b], then we may write P,(J) and P(J) as
Pnla, b] and Pla, b] respectively.

EXAMPLE 1.12 (Product space) Let Vi,...,V, be vector spaces.
Then the cartesian product

V=Vx-xV,

the set of all of ordered n-tuples (x1,...,z,) with z; € V; for j €
{1,...,n}, is a vector space with respect to the addition and scalar
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multiplication defined by

(931,---,$n)+(y17~~7yn) = (x1+y1)"'a$n+yn)v

a1, ..., xy) = (Qx1,...,qx,)
with zero element (0,...,0) and additive inverse of x = (z1,...,xy)
defined by —x = (—x1,..., —zy).

This vector space is called the product space of V1,...V,,.
As a particular example, the space F™ can be considered as the
product space Vi x --- x V, with V; =F for j =1,...,n.

Exercise 1.7 In each of the following, a set is given and some op-
erations are defined. Check whether V is a vector space with these
operations:

(i) Let V = {x = (z1,22) € R? : 25 = 0} with addition and scalar
multiplication as in R2.

(i) Let V = {x = (z1,22) € R? : 271 + 3w = 0} with addition
and scalar multiplication as in R2.

(iii) Let V = {x = (21, 22) € R? : 11 + x5 = 1} with addition and
scalar multiplication as for R?.

(iv) Let V. = R% F = R. For x = (71,22), ¥y = (y1,%2), let
x4y :=(r1+ y1, 22 + y2) and for all a € R,

I (an) a:O,
ar '_{ (az1,29/0), a#0.

(v) Let V=C2 F =C. For x = (1,72), ¥ = (y1,%2), let
x4y :=(r1+2y1,22+3y2) and ax:= (axi,are) VYa e C.
(vi) Let V=R2% F =R. For x = (z1,22), y = (y1,¥2), let

r+y:=(r1+y,r2+y2) and oazx:=(r1,0) VYaeR.

1.4 Subspace and Span
1.4.1 Subspace
We have seen that

e P, which is a subset of the vector space P is also a vector space,

e ('a,b] which is a subset of the vector space F([a,b],R) is also
a vector space,
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o V= {r=(r1,22) € R? : 15 = 0}, which is a subset of R? is
a vector space with respect to the addition and scalar multiplication
as in R2.

o V = {r = (x1,12) € R? : 221 + 3x2 = 0} which is a sub-

set of R? is a vector space with respect to the addition and scalar
multiplication as in R2.

These examples motivate the following definition.

Definition 1.5 (Subspace) Let V| be a subset of a vector space
V. Then Vj is called a subspace of V if Vj is a vector space with
respect to the operations of addition and scalar multiplication as in
V.

Theorem 1.4 Let V be a vector space, and Vy be a subset of V.
Then Vy is a subspace of V' if and only if for every pair of vectors
x,y in Vo and for every a € F,

r+yeVy and ax e V.

Proof. Clearly, if Vj is a subspace of V, then x +y € Vy and
ax € Vy for all z,y € Vy and for all a € F.

Conversely, suppose that x +y € Vg and ax € Vj for all x,y € Vy
and for all @ € F. Then, for any = € Vj,

0=0reVp and —z=(-1)zel.

Thus, axioms (c¢) and (d) in the definition of a vector space are
satisfied for Vj. All the remaining axioms are trivially satisfied as
elements of Vj are elements of V as well. 1

EXAMPLE 1.13 The space P, is a subspace of Py, for n < m.
EXAMPLE 1.14 The space C|[a,b] is a subspace of R[a, b].

EXAMPLE 1.15 (Space C*¥[a,b]) For k € N, let C¥[a,b] be the
set of all F-valued functions defined on [a, b] such that for each j €
{1,...,k}, j-th derivative 1) of z exists and z(9) € Cla,b]. It can
be seen that C¥[a, b] is a subspace of C[a, b].

EXAMPLE 1.16 The space Pla,b] is a subspace of C*[a,b] for
every k > 1.



Subspace and Span 11

Exercise 1.8 Let A be an m X n matrix of scalars. Show that the
set of all x € F™ which satisfies Ax = 0 is a subspace of F".

EXAMPLE 1.17 Let V be the space of all scalar sequences and
((N) = {x ev:Y Jz(j) < oo},
j=1

the set of all absolutely summable sequences. We show that ¢}(N) is
a subspace of F(N,F): For 2,y € //(N) and o, 3 € F, and n € N, we
have

IN

> laa(j) + By ()l o Y [z + 181 1y ()]
j=1 j=1 j=1

a3 ()] + 1813 )

IN

By letting n — oo, we have > 2, |ax(j) + By(j)| < oo so that
az + By € (1(N).

EXAMPLE 1.18 For a nonempty set 2, let

() := {x € F(5,F) : sug |z(s)] < oo}

se€

Note that £>°(Q2) is the set of all bounded functions on S. Thus,
x € £>°(9) if and only there exists M, > 0 such that |z(s)| < M, for
all s € S. We show that ¢>°(Q) is a subspace of F(S,F): To see this,
let z,y € B{*(Q2) and o, § € F. Suppose M, > 0, M, > 0 such that
|z(s)] < M, and |y(s)| < M, for all s € S. Then,

laz(s) + By(s)| < |a|My + |B|My Vs eS.

Thus, supyeg |ax(s) + By(s)| < oo, and hence ax + By € £>°.

In this example, if S is a finite set, then £>°(Q2) = F(S,F). But,
if S is an infinite set, then ¢>°(f2) is a proper subspace of F(S,TF).
To see this, let {s1,s2,...} be a denumerable subset of S, and let
x € F(S,F) be defined by x(s;) = j for all j € N. Then we see that
x does not belong to £>°(2).
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EXAMPLE 1.19 Let V be the space of all scalar sequences, and
coo = {(a1,0,...) € V: 3k € Nsuch thato; =0 Vj > k}.

Then it is seen that cyg is a subspace of V.

EXAMPLE 1.20 The set ¢y introduced in Example 1.19 is a sub-
space of /}(N), and the sets

g = {zeFN,F):z(n) —0asn— oo},
¢ = {zxeFN,F): (x(n)) converges }

are subspaces of £>°(N). We observe that
coo € £1(N) C ¢y C ¢ C L2(N).

The above inclusions are, in fact, proper. To see this, let x, ¥y, u,v in
F(N,F) be defined

1 1
j 7
for j € N. Then we see that

'xeeoo(N)\ca yGC\Co,

u € co \ £1(N), v e L1(N) \ cop.

Exercise 1.9 Suppose V) is a subspace of a vector space V', and V;
is a subspace of Vj. Then show that Vj is a subspace of V.. ¢

Exercise 1.10 Show that
Vo = {(x1, 22, 23) € R?: 21 + 29 + 23 =0, 21 + 229 + 323 = 0}
is a subspace of R3. Observe that ;) is the intersection of
Vi = {(z1,x2,23) € R3: 2y 4+ a9 + 23 = 0}

and
Vo = {(x1,22,23) € R? : 21 + 235 + 323 = 0}.
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Theorem 1.5 Suppose Vi and Vo are subspaces of a vector space.
Then Vi N Vs is a subspace of V.

Proof. Suppose z,y € V1 NV and o« € F. Then z,y € V; and
x,y € Va. Since V1 and Vs are subspaces, it follows that az, z4+y € V1
and ax,r +y € Vi so that ax,x +y € Vi N Va. Thus, by Theorem
1.4, V1 N Vy is a subspace. 1

Is union of two subspaces a subspace? Not necessarily:To see this
consider the subspaces

Vii={z = (z1,22) : 2 = 21}, Vo i={r = (z1,12) : 13 = 211}

of the space R?. Note that z = (1,1) € Vi and y = (1,2) € V3, but
r+y=(2,3) € ViUVs Hence V; UV is not a subspace of R2.

Theorem 1.6 Let Vi and Vo be subspaces of a vector space. Then
ViU Vs is a subspace if and only if either Vi C Vo or Vo C V.

Proof. Suppose either V; C V5 or Vo C Vi. Then either ViUV, =
V5 or ViUV, = V7, in both the cases V3 UV5; is a subspace. Conversely,
suppose Vi U Vs is a subspace. Assume for a moment that V7 € V5
and Vo € Vi. Then, there exists x,y € V such that x € V; \ V;
and y € Vo \ V1. Now, z,y € V3 U V,. Since V; U Vs is a subspace,
x4y € V1 UV, This implies that either x +y € Vi or x +y € V5,
which in turn implies y € V5 or x € V5. This is a contradiction.
Hence V7 & V5 and Vo € Vi is not possible. Hence, V3 C V5 or
Vo vy |1

Exercise 1.11 Suppose A is a set, and for each A € A let V) be a
subspace of a vector space V. Then Nycp V) is a subspace of V. ¢

Exercise 1.12 In each of the following vector space V, see if the
subset Vj is a subspace of V:
(i) V=R? and Vy = {(x1,22) : 79 = 221 — 1}.

(i) V =R? and Vj = {(21, 22, 23) : 221 — 29 — 23 = 0}.
(iii) V=C[-1,1] and Vp = {f € V : fis an odd function}.
(iv) V = C[O 1] and Vo ={feV: f()>OVt€[O,1]}.
(v) V =P3 and Vo = {ag + ait + ast? + ast® : ag = 0}.
(vi) V =Ps and Vg = {ag + a1t + ast® + ast® : as = 0}.

Exercise 1.13 Prove that the only proper subspaces of R? are the
straight lines passing through the origin.
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Exercise 1.14 Let V be a vector space and uq,...,u, are in V.
Show that

Vo ={aqui + ...+ apup : o €F,i=1,...,n}
is a subspace of V. ¢

1.4.2 Linear Combination and Span

Definition 1.6 (Linear combination) Let V' be a vector space
and uq,...,uy, are in V. Then, by a linear combination of uy, ..., Uy,
we mean an element in V' of the form ajuq +- - -+ apu, with o € T,
j=1,...,n.

Definition 1.7 (Span) Let S be a subset of V. Then the set of all
linear combinations of elements of S is called the span of S, and is
denoted by span S.

Thus, for S C V, x € span S if and only if there exists x1,...,z,

in S and scalars aq,...,a, such that z = a1x1 + - -+ + apTy,.
As a convention, span of the empty set is taken to be the singleton
set {0}.

Remember! By a linear combination, we always mean a linear
combination of a finite number of elements in the space. An expres-
sion of the form ayz1 +apx,+--- with z1,29,...in V and aq, s, . ..
in F has no meaning in a vector space, unless there is some additional
structure which allows such expression.

Theorem 1.7 Let V be a vector space, and S C V. Then span S is
a subspace of V', and span S is the smallest subspace containing S.

Proof. The fact that span S is a subspace of V is left as an exercise
(Hint: Use Theorem 1.4). It remains to show that span S is the
smallest subspace containing S. For this, consider a subspace Vj
of V such that S C Vj. Then, as Vj is a subspace, every linear
combination of members of S has to be in V{, that is, span S C V4.
This completes the proof. |

Exercise 1.15 Let S be a subset of a vector space V. Show that S

is a subspace if and only if S = span S.

Exercise 1.16 Let V be a vector space. Show that the the following
hold.
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(i) Let S be a subset of V. Then

span S = ﬂ{Y : Y is a subspace of V' containing S}.

(ii) Suppose Vj is a subspace of V and zg € V \ Vp. Then for
every x € span{xzo; Vp} := span ({zo} U Vp), there exist a unique
a€F, yeVysuch that z =axg+y. ¢

1.4.3 Examples

EXAMPLE 1.21 Let V = F” and for each j € {1,...,n}, let
ej € F" be the element with its j-th coordinate 1 and all other
coordinates 0’s. Then F™ is the span of {e1,...,e,}.

EXAMPLE 1.22 For 1 < k < n, let
Vo :={(ai,...,an) €ER":0; =0,j =k+1,...,n}.

Then it is seen that Vj is the span of {e1,..., e}, where e;(i) = d;;
with j=1,...,k; ¢1=1,...,n.

EXAMPLE 1.23 Let V = P, and u;(t) = /! for t € [a,b], j € N.
Then P, is the span of {uy,...,uns1}, and P = span {u, uz,...}.

NOTATION: For (i,5) € N x N, let

1 ifi=j
Oij = e
0 ifi#j.
Thus, in the above example, the i-th coordinate of e; is d;; for i, j =
1,...,n, ie.,

ei:(5i175i27--‘75in), /LE{].,,TI,}

EXAMPLE 1.24 The space cg is the span of {ej,ea,...}, where
ej(i) = (Sij with 2,7 € N.

Exercise 1.17 Let u;(t) = /=1, j € N. Show that span of {u1, ..., un11}
is Py, and span of {uj,ug,...} isP. ¢

Exercise 1.18 Let ui(t) = 1, and for j = 2,3,..., let u;(t) =
1+t+...+t. Show that span of {u1,...,u,} is Py, and span of
{ul,uQ,.. } is P. ’
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1.4.4 Sums of Subsets and Subspaces

Definition 1.8 (Sum of subsets) Let V be a vector space, z € V,
and E, E1, Es be subsets of V. Then we define the following:

r+E:={r+u:ueckE},

FEi+ Ey = {33‘1 +x9:21 € Fp, 29 € Eg}.
The set E1 4+ F» is called the sum of the subsets F1 and Es.

Theorem 1.8 Suppose Vi and Va are subspaces of V.. Then Vi + Vs
is a subspace of V. In fact,

Vi + Vo =span (V3 U Vs).

Proof. Let z,y € V1+V5 and a € F. Then, there exists z1,y1 € V1
and xa,y2 € V5 such that x = x1 +y1, y = y1 + y2. Hence,

r+y=(x1+y)+wi+y2)=(x1+wm)+ (z2+y2) € Vi + V4,

alz+y) =a(r1 +y1) = (ax1 +ayr) € Vi + Va.

Thus, Vi + V5 is a subspace of V.

Now, since V3 U Vo C V; + Vb, and since V; 4+ Vs is a subspace,
we have span (V3 U Va) C Vi + Vi, Also, since Vi C span (Vi U Va),
Vo C span (V1 U Va), and since span (V4 U V3) is a subspace, we have
Vi + Vo Cspan (V1 U V). Thus,

Vi + Vo Cspan (V1 U Vo) C Vi + Va,
which proves the last part of the theorem. I

Exercise 1.19 Suppose Vi and V» are subspaces of a vector space V
such that V3 NV2 = {0}. Show that every x € V; + V5 can be written
uniquely as x = x1 + xo with x1 € V; and 5 € V5. ¢

Definition 1.9 If V7 and V5 are subspaces of a vector space V' such
that V3 N'Va = {0}, then we write Vi + V5 as V] @ Vs, and call it as
direct sum of V1 and V5. O

Exercise 1.20 Suppose V7 and V5, are subspaces of a vector space
V. Show that V73 + Vo = V; if and only if V5 C V. ¢
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1.5 Basis and Dimension

Definition 1.10 (Linear dependence) Let V' be a vector space.
A subset E of V is said to be linearly dependent if there exists u € F
such that u € span (E \ {u}).

Definition 1.11 (Linear independence) Let V' be a vector space.
A subset E of V is said to be linearly independent in V if it is not
linearly dependent.

Thus, if F is a subset of V, then

e Eislinearly dependent if and only if there exists {u1,...,u,} C
FE and scalars ag, . . ., ay,, with at least one of them nonzero, such that
atug + -+ apxy, =0, and

e F is linearly independent if and only if for every finite subset
{ut,...,up} of B, cqus + -+ apzy, =0 = ;=0 Vi=1,...,n.

If {uy,...,u,} is a linearly independent (respectively, dependent)
subset of a vector space V, then we may also say that uq,...,u, are
linearly independent (respectively, dependent) in V.

Note that a linearly dependent set cannot be empty. In other
words, the empty set is linearly independent!

Caution! If uy,...,u, are such that at least one of them is not in the
span of the remaining, then we cannot conclude that uq,...,u, are
linearly independent. For the linear independence of {uy, ..., u,}, it
is required that u; & span{u; : j # i} for every i € {1,...,n}.

Also, if {u1, ..., u,} are linearly dependent, then it does not imply
that any one of them is in the span of the rest.

To illustrate the above points, consider two linearly independent
vectors up,uy. Then we have uy ¢ span {ug, 3us}, but {uy, us, 3us}
is linearly dependent, and {ui,u2,3us} is linearly dependent, but
uy ¢ span {ug, 3us}.

Exercise 1.21 Let V be a vector space.

(i) Show that a subset {ui,...,u,} of V is linearly dependent
if and only if there exists a nonzero (ai,...,ay) in F™ such that
aruy + - + apuy = 0.

(ii) Show that a subset {ui,...,un} of V is linearly independent

if and only if the function (aq,...,an) — ajus + - - - + apuy, from F”
into V' is injective.
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(iii) Show that if £ C V is linearly independent in V', then 0 ¢ E.

(iv) Show that if E C V is linearly dependent in V, then every
superset of E is also linearly dependent.

(v) Show that if £ C V is linearly independent in V', then every
subset of F is also linearly independent.

(vi) Show that if {uj,...,un} is a linearly independent subset
of V, and if Y is a subspace of V such that {u1,...,u,} NY = &,
then every x in the span of {uj,...,u,, Y} can be written uniquely
as x = ajuj + - + apuy +y with (a1,...,ap) €F* y €Y.

(vii) Show that if £} and Es are linearly independent subsets
of V such that (span £ N (span E2) = {0}, then E; U E3 is linearly
independent. ¢

Exercise 1.22 For each k € N, let FF denotes the set of all column
k-vectors, i.e., the set of all k x 1 matrices. Let A be an m X n matrix
of scalars with columns a;, as,...,a,. Show the following:

(i) The equation Az = 0 has a non-zero solution if and only if
aj,as, ..., a, are linearly dependent.

(ii) Fory € F™, the equation Az = y has a solution if and only if
aj, s, .- -, 0y,,y are linearly dependent, i.e., if and only if y is in the
span of columns of A. ¢

Definition 1.12 (Basis) A subset F of a vector space V is said to
be a basis of V if it is linearly independent and span £ = V.

EXAMPLE 1.25 For each j € {1,...,n}, let e; € F" be such that

e;j(i) = i, i,j = 1,...,n. Then we have seen that {ei,... ey} is
linearly independent and its span is F”. Hence {eq,...,e,} is a basis
of F™.

EXAMPLE 1.26 For each j € {1,...,n}, let ¢; € F" be such that
(i) = 6, 4,5 = 1,...,n. Then it is easily seen that {e;,...,¢,} is
linearly independent and its span is F". Hence {e;,...,¢,} is a basis

of F".

Definition 1.13 (Standard bases of F" and F") The basis {e1, ...
of F™ is called the standard basis of F", and the basis {e;,...,e,} of
F™ is called the standard basis of F™.

7en}
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EXAMPLE 1.27 Let u;(t) = t/=!, j € N. Then {u1,...,up+1} is
a basis of Py, and {uy,us,...} is a basis of P.

Exercise 1.23 Let u;(t) = 1, and for j = 2,3,..., let u;(t) =
14+t+4...+t71 Show that {ui,...,u,s1} is a basis of P,, and
{u1,ug,...} is a basis of P. ¢

EXAMPLE 1.28 For i = 1,...,m; j = 1,...,n, let M;; be the
m X n matrix with its (4,j)-th entry as 1 and all other entries 0.
Then

{Mj:i=1...,m;j=1,...,n}

is a basis of F™*",

EXAMPLE 1.29 For \ € [a,b], let up(t) = exp (M), t € [a,b].
Then it is seen that {uy : o € [a,b]} is an uncountable linearly
independent subset of Cla, b].

Clearly, a linearly independent subset of a subspace remains lin-
early independent in the whole space. Thus, the set {uj,us,...} in
Example 1.27(ii) is linearly independent in C|[a, b] and F([a, b], F).

Exercise 1.24 If {uj,...,u,} is a basis of a vector space V, then
show that every x € V, can be expressed uniquely as x = aqu;+-- -+
Qapln; i.e., for every x € V| there exists a unique n-tuple (aq, ..., o)

of scalars such that © = aqu; + -+ + an. ¢

Exercise 1.25 Consider the system of equations

a1 + apry + ... + apr, = b

as1x1  + axry + ... + agr, = by
+ + ... + - =

am1T1 + am1T2 + + GpnTn = by

Show that the above system has at most one solution if and only if
the vectors

ail ai2 Ain
a2 a2 _|agm

w1 ‘= , W2 = yeeey  Wp 1=
am1 am?2 Amn,

are linearly independent. ¢
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Exercise 1.26 Let u1,...,u, are linearly independent vectors in a
vector space V. Let [a;;] be an m x n matrix of scalar, and let

v = apur + oau2 + ...+ GmlUn

Vo = a12u1 -+ aus + ... +  AmaUn
+ ..+ .+

VUp = A1pU1 + a2puz + ...+ AmnUn-

Show that the v, ..., v,, are linearly independent if and only if the
vectors

ail ai2 aln

as1 a2 _lame
wy 1= , W = e, Wy =

am1 Am?2 Amn,

are linearly independent. ¢

Exercise 1.27 Let p1(t) = 1+t + 3t2, pa(t) = 2 + 4t + 12, p3(t) =
2t 4 5t2. Are the polynomials pi, pa, p3 linearly independent? 4

Theorem 1.9 Let V' be a vector space and E C V. Then the fol-
lowing are equivalent.

(i) E is a basis of V

(i) E is a mazimal linearly independent set in V, i.e., E is
linearly independent, and a proper superset of E cannot be linearly
independent.

(i1i) E is a minimal spanning set of V', i.e., span of E is V', and
a proper subset of E cannot span V.

Proof. (i) <= (i1): Suppose F is a basis of V. Suppose F’ is a
proper superset of E. Let z € E'\ E. Since F is a basis, « € span (E).
This shows that E’ is linearly dependent (as FU {z} C E').

Conversely, suppose F is a maximal linearly independent set. If
E is not a basis, then there exists = ¢ span (E). Then, F U {z} is a
linearly independent which is a proper superset of ¥ — a contradiction
to the maximality of F.

(i) <= (i1i): Suppose F is a basis of V. Suppose E’ is a proper
subset of E. Then, it is clear that there exists x € E \ E’ which is
not in the span of E’ (since ' U{xz} C F). Hence, E’ does not span
V.

Conversely, suppose F is a minimal spanning set of V. If F is
not a basis, then FE is linearly dependent, and hence there exists
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x € span (E'\ {z}). Since F spans V, it follows that F \ {z}, which
is a proper subset of F, also spans V — a contradiction to the fact
that F is a minimal spanning set of V. I

Exercise 1.28 Suppose V; and Vs are subspaces of a finite dimen-
sional vector space V' such that V3 NV, = {0}. If E; and E» are
bases of V1 and V5, respectively, then prove that Fy U Es is a basis
of Vi + V5.

1.5.1 Dimension of a Vector Space

Definition 1.14 (Finite dimensional space) A vector space V
is said to be a finite dimensional space if there is a finite basis for V.

Recall the empty set is considered as a linearly independent set,
and its span is the zero space.

Definition 1.15 (Infinite dimensional space) A vector space
which is not a finite dimensional space is called an infinite dimen-
stonal space.

Theorem 1.10 If a vector space has a finite spanning set, then it
has a finite basis. In fact, if S is a finite spanning set of V, then
there exists a basis E C S.

Proof. Let V be a vector space and S be a finite subset of V' such
that span.S = V. If S itself is linearly independent, then we are
through. Suppose S is not linearly independent. Then there exists
uy € S such that u; € span (S \ {u1}). Let S; =S5\ {u1}. Clearly,

spanS; =span S = V.

If 57 is linearly independent, then we are through. Otherwise, there
exists ug € Sp such that ugy € span (S7\ {ua}). Let So = S\ {u1,ua2}.
Then, we have

span So = span 51 = V.

If Sy is linearly independent, then we are through. Otherwise, con-
tinue the above procedure. This procedure will stop after a
finite number of steps, as the original set S is a finite set, and we
end up with a subset Si of S which is linearly independent and
span S =V. 1
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By definition, an infinite dimensional space cannot have a finite
basis. Is it possible for a finite dimensional space to have an infinite
basis, or an infinite linearly independent subset? The answer is, as
expected, negative. In fact, we have the following result.

Theorem 1.11 Let V be a finite dimensional vector space with a
basis consisting of n elements. Then every subset of V' with more
than n elements is linearly dependent.

Proof. Let {uq,...,u,} be abasis of V, and {x1,...,xp41} C V.
We show that {z1,..., 2,41} is linearly dependent.

If {x1,...,2,} is linearly dependent, then {z1,..., 2,11} is lin-
early dependent. So, let us assume that {z1,...,2,} is linearly in-
dependent. Now, since {u1,...u,} is a basis of V, there exist scalars
at,...,0p, such that

T1 = qul + -+ aplp.

Since x1 # 0, one of aq, .. ., ay, is nonzero. Without loss of generality,
assume that oy # 0. Then we have u; € span {1, ug, ..., u,} so that
V = span {ui,ug,...,up} = span{xi, ug, ..., uy}.

Let 0452), . ,047(12) be scalars such that

Ty = a?)xl + aéQ)uQ + ot aﬁf)un.

(2) (2)

Since {x1, z2} is linearly independent, at least one of oy, ..., ap ’ is
nonzero. Without loss of generality, assume that ocg) # 0. Then we
have ug € span{x1, za,us, ..., u,} so that

V =span{xi,ug,...,uy} = span{xy, o, us, ..., uy}.

Now, let 1 < k <n — 1 be such that

V =span{x1,xo, ..., Tk, Ukt1, ..., Un -
Suppose k < n — 1. Then there exist scalars agkﬂ), . ,a;’““) such
that

k+1 k+1 k+1
Thy1 = ag * )ml + e +oz,(C * )IL‘k +a,(€++1 )uk+1 + -+ aq(f“)un.

Since {x1, ..., zk41} is linearly independent, at least one of the scalars

a,(!fll), ce a%kﬂ) is nonzero. Without loss of generality, assume that
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k+1
a/(c—l—l ) # 0. Then we have ugi1 € span {1, ..., Tp11, Upt2,-..,Un}
so that
V. = span{z1,..., Tk, Ugs1, .- Un}
= span{z1,...,Tp11, Ukt2, .-, Up}-
Thus, the above procedure leads to V' = span{xi,...,Zn_1,un} SO
that there exist scalars agn), cee aﬁ{‘) such that

(n)

Tp =05 T+ -+ ain,)lxn,l + oM,

Since {z1,...,z,} is linearly independent, it follows that a;") £ 0.
Hence,

Up € span{zy,..., Ty}
Consequently,
V =span{zi,x9,...,Tn_1,Un} = span{x1,x2, ..., Tn_1,Tn}-
Thus, z,4+1 € span{zi,...,z,}, showing that {z1,..., 241} is lin-

early dependent. |1

The following three corollaries are easy consequences of Theorem
1.11. Their proofs are left as exercises for the reader.

Corollary 1.12 If V is a finite dimensional vector space, then any
two bases of V' have the same number of elements.

Corollary 1.13 If a vector space contains an infinite linearly inde-
pendent subset, then it is an infinite dimensional space.

Corollary 1.14 If (a;;) is an m X n matric with a;; € F and n > m,
then there exists a nonzero (au,...,a,) € F" such that

a1 + aipan + - - -+ ajpay, = 0, t=1,...,m.

Exercise 1.29 Assuming Corollary 1.14, give an alternate proof for
Theorem 1.11. ¢

By Corollary 1.14, we see that if A is an m xXn matrix with entries
from F and n > m, then there exists an n X 1 nonzero matrix x such
that

Ax =0,

where 0 is the m x 1 zero matrix.
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Definition 1.16 (n-vector) An n x 1 matrix is also called an n-
vector.

In view of Corollary 1.12; the following definition makes sense.

Definition 1.17 (Dimension) Suppose V is a finite dimensional
vector space. Then the dimension of V' is the number of elements in
a basis of V', and this number is denoted by dim (V). If V is infinite
dimensional, then its dimension is defined to be infinity and we write
dim (V') = oc.

EXAMPLE 1.30 The spaces F" and P,,_; are of dimension n.

EXAMPLE 1.31 It is seen that the set {ej,ea,...,} C F(N,F)
with e;(i) = ;; is a linearly independent subset of the spaces ¢!(N)
and ¢~ (N). Hence, it follows that ¢/!(N) and ¢>°(N) are infinite di-

mensional spaces.

EXAMPLE 1.32 We see that {uy,ug,...,} with u;(t) =t/71, j €
N, is linearly independent in C*[a,b] for every k € N. Hence, the
space C*[a, b] for each k € N is infinite dimensional.

EXAMPLE 1.33 Suppose S is a finite set consisting of n elements.
Then F(S,F) is of dimension n. To see this, let S = {s1,...,sn},
and for each j € {1,...,n}, define f; € F(S,F) by

fj(si):&‘j, 1€ {1,...,n}.
Then the set {f1,..., fn} is a basis of F(S,F): Clearly,

Zajfj =0 = o :Zajfj(si) =0 V.

j=1 j=1
Thus, {fi,..., fn} is linearly independent. To see that it spans the
space, it is enough to note that f = Z?Zl f(sj)fj for all f € F(S,F).
Exercise 1.30 Suppose Vi and V, are finite dimensional vector
spaces. Show that V] x V5 is a finite dimensional vector space and
dim (V] x V) = dim (V1) + dim (V3).

(Hint: If {u1,...,up} and {v1,...,v,} are bases of V; and V3, re-
spectively, then {(u;,0) :i=1,... m}U{(0,v;) : j=1,...,n}isa
basis of V| x V3.)
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Exercise 1.31 Let V5 and V5 be subspaces of a finite dimensional
vector space V' such that V1 NVa = {0}. Show that V;j x V4 is linearly
isomorphic with V; & V5.

Remark 1.1 We have seen that if there is a finite spanning set S for
a vector space V, then there is a basis £ C S. Also, we know that a
linearly independent set F is a basis if and only if it is maximal, in the
sense that, there is no linearly independent set properly containing
E. The existence of such a maximal linearly independent set can be
established using an axiom in set theory known as Zorn’s lemma. It
is called lemma, as it known to be equivalent to an axiom, called
Axiom of choice.

1.5.2 Dimension of Sum of Subspaces

Theorem 1.15 Suppose Vi and Vs are subspaces of a finite dimen-
sional vector space V. If Vi N Vo = {0}, then

dim (Vi + V) = dim V; + dim V5.

Proof. Suppose {uy,...,ux} is a basis of Vi and {vi,...,vp} is
a basis of V5. We show that E := {uj,...,ux,v1,...,0¢} is a ba-
sis of Vi + Va. Clearly (Is it clear?) spanE = Vi + Va. So, it is
enough to show that F is linearly independent. For this, suppose
at,...,op, B1,. .., B are scalars such that cquq +. ..+ agug + G1v1 +
...+ Bevg = 0. Then we have

T = aqur + ...+ agug = —(Bro1 + ...+ Bevg) € ViN Ve = {0}

so that aqui +...+agug = 0 and Bi1v1+. ..+ Bevy = 0. From this, by
the linearly independence of u;’s and v;’s, it follows that «; = 0 for
ie{l,...,k} and B; =0 for all j € {1,...,¢}. Hence, F is linearly
independent. This completes the proof. 1

In fact, the above theorem is a particular case of the following.

Theorem 1.16 Suppose Vi and Vs are subspaces of a finite dimen-
stonal vector space V. Then

dim (Vi + V5) = dim V4 + dim V3 — dim (V; N V&).

For the proof of the above theorem we shall make use of the
following result.
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Proposition 1.17 Let V be a finite dimensional vector space. If Ey
is a linearly independent subset of V', then there exists a basis E of
V' such that Eg C E.

Proof. Let Ey = {u1,...,u} be a linearly independent subset of
V, and let {v1,...,v,} be a basis of V. Let

ko if v1 € span (Ep),
b EoU{vi} if v1 ¢ span (Ep).

Clearly, Fy is linearly independent, and

Ey C En, {v1} C span (E4).

Then define

by =

B if vo € span (E1),
Ei U {Ug} if vy Q span (El)

Again, it is clear that F» is linearly independent, and

Ey CEy,  {vi,v2} C span (Ep).

Having defined FEi, ..., Ej;, j <n, we define

- E; if vj41 € span (E}),
! E; U {Uj-‘rl} if vj11 & span (E])

Thus, we get linearly independent sets F1, Fo, ..., E, such that
EyCELC...E,, {v1,v2,...,v,} Cspan (E,).

Since {v1,...,v,} is a basis of V, it follows that E := E,, is a basis
of V such that Eg C E, =FE. 1

Proof of Theorem 1.16. Let {uq,...,ur} be a basis of the sub-
space V1 N V. By Proposition 1.17, there exists vy,...,vy in Vi
and wi,...,w, in Vo such that {uj,...,ug,v1,...,v0} is a basis
of Vi, and {uy,...,uk, wi,..., Wy} is a basis of V5. We show that
E :={uy,...,ug,v1,...,00,W1,..., Wy} is a basis of V| + V5.
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Clearly, Vi + Vo = span (E). Hence, it is enough to show that F
is linearly independent. For this, let aq,...,ak, 81,5 80,71, Vm
be scalars such that

k 0 m
z iu; + Zﬁﬂ}l + Z Yiw; = 0. (*)
i=1 =1 =1

Then
k l m
T = Zaiui +Z,Bﬂ)i = —Z’yiwi e Vin,.
i=1 i=1 i=1
Hence, there exists scalars d1,...,d; such that
k 4 k k 0
Z Qiu; + Z Bivi = Z djui, i.e., Z(ai — 0i)ui + Zﬁwi =0
i=1 i=1 i=1 i=1 i=1
Since {uq,...,uk,v1,...,v} is a basis of Vi, it follows that a; = §;

foralli=1,...,k, and 8; =0 for j = 1,...,¢. Hence, from (x),

k m
Z Uy + Z%wi = 0.
=1 =1

Now, since {uy,...,uk, wi,..., Wy} is a basis of Vs, it follows that
aj=0foralli=1,...,k,and y; =0forall j =1,...,m.
Thus, we have shown that {ui,...,ug,v1,..., 00, w1, ..., Wy} is

a basis of V4 + V5. Since dim (V1 + Vo) =k + 4+ m, dimV; =k + ¢,
dim V5 = k 4+ m and dim (V; N'Va) = k, we get

dim (V4 + V32) = dim Vj + dim V5 — dim (V3 N V3).
This completes the proof. I
1.6 Quotient Space
Let V be a vector space and V be a subspace of V. For x € 1}, let
x4+ Vo ={z+u:uecV}
We note that (verify!), for z,y € V,

c+Vo=y+WVy < =z —y € W,
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so that we have
x+ V=W < z el

Let us denote

ViVo ={z+V:xeV}

Theorem 1.18 On the set V/Vy, consider the the operation of ad-
dition and scalar multiplication as follows: For x,y € V and a € F,

(z+ Vo) + (y+ Vo) := (z +y) + W,

alz + V) := ax + Vp.

With these operations, V//Vy is a vector space with its zero as Vi and
additive inverse of x + Vy as (—x) + Vp.

Definition 1.18 The vector space V/Vj is called the quotient
space of V with respect to Vj. %

EXAMPLE 1.34 Let V = R? over F = R and Vj be the straight
line given by Vj := {(x,y) : ax + by = 0} for some a,b € R. Then for
every v € R%, v + V is the line passing through v and parallel to V.

EXAMPLE 1.35 Let V = R3 over F = R and Vj be the plane
given by Vp := {(z,y,2) : ax + by + cz = 0} for some a,b,c € R.
Then for every v € R?, v 4+ V is the plane passing through v and
parallel to Vj.

Theorem 1.19 Let V is a finite dimensional vector space and Vy is
a subspace of V. If V1 is a subspace of V such that V = Vy & Vi,
then Vi is linearly isomorphic with V/ V.

As a corollary to the above theorem we have the following.

Theorem 1.20 Let V is a finite dimensional vector space and Vy is
a subspace of V.. Then dim (V/V}) is a finite dimensional space and

dim (V) = dim (Vo) + dim (V/V}).
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Linear Transformations

2.1 Motivation

We may recall from the theory of matrices that if A is an m x n
matrix, and if Z is an n-vector, then AZ is an m-vector. Moreover,
for any two n-vectors Z and g, and for every scalar «,

A(F+§) = AT+ A,  A(od) = aAZ).

Also, we recall from calculus, if f and g are real-valued differentiable
functions (defined on an interval .J), and « is a scalar, then

d d d d d
%(f+9):%f+£ga %(af):aaf-

Note also that, if f and g are continuous real-valued functions defied
on an interval [a, b], then

/ab(f+g)(t)dt:/abf(t)dm/abg(t) dt, /ab(af)(t) :a/abf(t) dt,

and for every s € [a, b],

/as(fw = / F&)di+ /:g(t) dt, /a (af)(t) = a /a f(tyt

Abstracting the above operations between specific vector spaces, we
define the notion of a linear transformation between general vector
spaces.

29
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2.2 Definition and Examples

Definition 2.1 (Linear transformation) Let V; and V5 be vector
spaces (over the same scalar field F). A a function 7' : V; — V3 is
said to be a linear transformation or a linear operator from Vi to Vs
if

T(x+y) =T(x)+T(y), T(azx) = oT'(z)

for every z,y € V; and for every a € F.

For x € V4, we may denote the element 7'(x) by Tz as well.

EXAMPLE 2.1 Let V be a vector space and A be a scalar. Define
T:V =V by T(x) =Ax, x € V. Then we see that T is a linear
transformation.

EXAMPLE 2.2 (Matrix as linear transformation) Let A =
(a;j) be an m x n-matrix of scalars. For z € F", let T'(z) = Ax
for every x € F". Then it follows that 7' : F® — F™ is a linear
transformation.

EXAMPLE 2.3 For each j € {1,...,n}, the function T} : F* — F
defined by Tjz = z; for = (x1,...,2,) € F", is a linear transfor-
mation.

More generally, we have the following example.

EXAMPLE 2.4 Let V be an n-dimensional space and let £ =
{u1,...,u,} be a basis of V. For z = Z?Zl aju; € V, and for each
je{l,...,n}, define T; : V.= F by

Tjr = «j.

Then Tj is a linear transformation.

EXAMPLE 2.5 (Evaluation of functions) For a given point
T € [a,b], let T : Cla,b] — I be defined by

TTf = f(T)v f € C[a’ b]

Then T, is a linear transformation.

More generally, we have the following example.
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EXAMPLE 2.6 Given points 7,...,7, in [a,b], and wi,...w, in
F, let T': Cla,b] — F be defined by

Tf=> f(r)w, feClabl

i=1
Then T is a linear transformation

EXAMPLE 2.7 (Differentiation) Let T : C'[a,b] — C|a,b] be
defined by
Tf=f, feCa,b,

where f’ denotes the derivative of f. Then T is a linear transforma-
tion.

EXAMPLE 2.8 For A\, pu € F, the function T : C'[a,b] — CJa, V]
defined by

Tf=M+pf, feC' b,

is a linear transformation.
More generally, we have the following example.

EXAMPLE 2.9 Let T} and 75 be linear transformations from V;
to V5 and A and p be scalars. Then T : V; — V5 defined by

T(x) = Ty (x) + puTar(x), x= €V,

is a linear transformation.

EXAMPLE 2.10 (Definite integration) Let T : C[a,b] — F be
defined by

ri- | "t feClab

Then T is a linear transformation.

EXAMPLE 2.11 (Indefinite integration) Let T' : Cfa,b] —
Cla, b] be defined by

(Tf)(s):/sf(t)dt, f€Cla,b], sé€la,b.

Then T is a linear transformation.
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EXAMPLE 2.12 (Linear transformation induced by a
matrix) Let A = (aj;) be an m X n-matrix of scalars. For z =
(a1,..., ) in F, let

n
Tz = (b1, Bm), Bz‘:Zaijaj, 1=1,...,m.
j=1

Then T : F* — F™ is a linear transformation.

More generally, let V; be an n-dimensional vector space and
V2 be an m-dimensional vector space. Let By = {ui,...,u,} and
Ey = {v1,...,un} be a bases of V] and V3, respectively. For x =
djo1ojuj €V, define T': Vi — V5 by

m n
Tr = Zﬁivi, where f; = Zaijaj, 1€ {1, B ,m}.
=1 j=1

Then T is a linear transformation.

EXAMPLE 2.13 Let V; and V5 be vector spaces with dim V; = n <
oo. Let By = {uq,...,u,} be a basis of V; and Eo = {v1,...,v,} be
a subset of V5. For = Z?Zl ajuj € Vi, define T : Vi — Vo by

m
Tx = g Q;U;.
i=1

Then T is a linear transformation.

Exercise 2.1 Show that the linear transformation 7" in Example
2.13 is

(a) injective if and only if Es is linearly independent,

(b) surjective if and only if span (F2) = Vo. 4

Definition 2.2 (Isomorphism of vector spaces) Vector V; and
V5 are said to be linearly isomorphic if there exists a bijective
linear transformation T': Vi — V&, and in that case we write V3 ~ V5.

Example 2.13 shows that any two finite dimensional vector spaces
of the same dimension are linearly isomorphic.

If the codomain of a linear transformation is the scalar field F,
then it has a special name.
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Definition 2.3 (Linear functional) Let V be a vector space. A
linear transformation 7" : V' — F is called a linear functional on V.

Linear functionals are usually denoted by small letters such as f,
g, etc., whereas linear transformations between general vector spaces
are denoted by capital letters A, B, T, etc.

The linear transformations given in Examples 2.3, 2.4, 2.5, and
2.10 are linear functionals.

The linear functionals f1, ..., f, defined in Example 2.4 are called
the coordinate functionals on V with respect to the basis E of V.

Definition 2.4 Let V be an n-dimensional vector space and let
E = {u1,...,u} be abasis of V. For x = > 1, aju; € V, and for
each j € {1,...,n}, define f; : V — F by

fi(z) = aj.

Then fiq,..., f, are linear functionals on V', and they are called the
coordinate functionals on V with respect to the basis E of V.

We observe that if fi,..., f, are the coordinate functionals on V'
with respect to the basis E' = {uq,...,u,} of V, then

fi(u) =06;5 Vi, j=1,...,n.

It is to be remarked that these linear functionals depend not only on
the basis E' = {uy,...,u,}, but also on the order in which uy, ..., u,
appear in the representation of any z € V.

2.3 Space of Linear Transformations

We shall denote the set of all linear transformations from a vector
space Vj to a vector space Vo by L(V1,Va). If Vi = V5, then we write
L(V1,Va) by L(V), where V =V} = V4.

On the set £(V1,Vs), define addition and scalar multiplication
pointwise, i.e., for T,T1,T> in L(V1,V2) and « € F, linear transfor-
mations 177 + 15 and a1 are defined by

(Tl + TQ)(CL‘) =Tz + Thx,

(aT)(z) = aTx
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for all x € V. Then it is seen that £(V7,V4) is a vector space with
its zero element as the zero operator O : Vi — V5 defined by

Oxr=0 VzeW

and the additive inverse —T of T € L(V1,V3) is =T : V1 — V5 defined
by
(=T)(z)=-Tx Vzel.
The space L(V,F) of all linear functionals on V' is called the dual
of the space V.

Theorem 2.1 Let V' be a finite dimensional vector space, and let
E = {uy,...,u,} be a basis of V. If f1,...,fn are the coordinate
functionals on 'V with respect to E, then we have the following:

(i) Bvery x € V can be written as x = Y ._, fj(x)u;.
(i1) {f1,-.-, fn} is a basis of L(V,TF).

Proof. Since E = {ui,...,u,} is a basis of V|, for every z € V,
there exist unique scalars ayq,...a, such that x = Z?Zl ajuj. Now,
using the relation f;(u;) = d;5, it follows that

fi(z) :Zajfi(uj) = q, i=1,...,n.
=1

Therefore, the result in (i) follows.
To see (ii), first we observe that if > ;" | o f; = 0, then

n
Q; :Zalfl(u]) =0 ijl,,n
i=1

Hence, {f1,..., fn} is linearly independent in £L(V,F). It remains to
show that the span{fi,..., fn} = L(V,F). For this, let f € L(V,F)
and x € V. Then using the representation of = in (i), we have

F@) = 3" f @) f ) = (Z f(Uj)fj> (@)
P =1

forall z € V. Thus, f =377, f(u;)f; so that f € span{f1,..., fa}.
This completes the proof. |
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Let V be a finite dimensional vector space and let E = {u1,...,u,}
be a basis of V', and f1, ..., f,, be the associated coordinate function-
als. In view of the above theorem, we say that {fi,..., f,} is the

dual basis of £(V,F) with respect to the (ordered) basis E of V.

Exercise 2.2 (a) Let V7 and V3 be finite dimensional vector spaces,
and Fy = {uq,...,up} and Eo = {v1,..., vy} be bases of V; and V53,
respectively. Let F} = {f1,..., fn} be the dual basis of £(V1,F) with
respect to E7 and Fy = {g1,...,9n} be the dual basis of L(V;,F)
with respect to Fy. Fori=1,...,n;j=1,...,m,let T};; : V = W
defined by

Tij(z) = fj(z)v;, x € V.

Show that {T;; :i=1,...,n;j =1,...,m} is a basis of L(V1,V3).

(b) Let Vi and V, be vector spaces, and V) be a subspace of V.
Let Ay : Vo — V5 be a linear transformation. Show that there exists
a linear transformation 7": Vi — V5 such that Ay, = Ap. ¢

2.4 Matrix Representations

Let V1 and V4 be finite dimensional vector spaces, and Ey = {u1,...,u,}
and By = {v1,...,v,} be bases of V; and V5, respectively. Let
T : V13 — V5 be a linear transformation. Note that for every x € V1,
there exists a unique (a1,...,an) € F" such that = 7%, aju;.
Then, by the linearity of T', we have

T(x) = a;T(u;).
j=1

Since T'(uj) € V; for each j =1,...,n and {v1,...,vy} is a basis of
Va, T'u; can be written as

m
T(uj) =) aijvi
i=1
for some scalars ajj, agj, . .., am;. Thus,

n n m m n
T(x)=) ajTu; =) q (Z aijUi> => | D aiay | v
j=1 j=1 ; 1

=1 =1 j:
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If we denote the i-th coordinate of a vector & € F" by Z;, then the
above relation connecting the linear transformation 7" and the matrix
A = (a;j) can be written as

m

=1

In view of the above representation of T, we say that the m x n
matrix A = (a;;) is the matriz representation of T, with respect to
the ordered bases E7 and Es of Vi and V5 respectively. This fact is
written as

(1) 5y, 5 = (aij)-

Clearly, the above discussion also shows that for every m x n
matrix A = (a;;), there exists a linear transformation 7" : Vi — V5
such that [T)g, g, = (ai;). Thus, there is a one-one correspondence
between L£(V7, V) onto F™*™ namely,

T [T]Ez,Er

Exercise 2.3 Let V; and V5 be finite dimensional vector spaces,
and By = {u1,...,u,} and Fy = {v1,...,v,} be bases of V] and V5,
respectively. Show the following:

(a) If {g1,...,9m} is the ordered dual basis of £(V1,F) with
respect to the basis Ea of Vs, then for every T' € L(V1, Va),

[T eym = (9i(Tuj)) -
(b) If A,B € L(V1,V2) and a € F, then
[A+ Blg, g, = [AlEy.E + [BlEs,Ers [aAlg, B, = [AlE, B, -
(c) Suppose {M;;:i=1...,m;j=1,...,n}is a basis of F""*".
If Tiy; € L(V1, V) is the linear transformation such that [T;]g, 5, =

M;j;, then {T}; : i =1...,m;j = 1,...,n} is a basis of L(V3,V5).
(For example, M;; can be takes as in Example 1.28. 4

Exercise 2.4 Let T : R? — R3 be defined by

T(z1,22,23) = (v2 + 3,23 + 21,21 + x2), (21,29,23) € R3.
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Find the matrix representation of T with respect to the basis given
in each of the following.
() B = {(1,0,0)0.1,0) (0,0.)), B = (1,0.0) (1 1,0). (1
(b) Er ={(1,0,0), (1, )0)7(17171)} B, ={(1
(c) By = {(Lla_l)a( 1L,1,1),(1,— 1)}7
E,={(-1,1,1),(1,-1,1),(1,1,— 1)

Exercise 2.5 Let T : P3 — P2 be defined by T'(ag + a1t + ast® +
a3t3) = a; + 2ast + 3ast?. Find the matrix representation of 7' with
respect to the basis given in each of the following.

(a) By = {1,t,t*,#3}, By = {1 +t,1 —t,t%}

(b) By = {1,1+t, 1+t +t2 3}, By ={1,1 +t,1+t+t%}

(c) By ={L,1+t,1+t+t2 1+t +12+13}, By = {t?,t,1}

Exercise 2.6 Let T : P? — P3 be defined by T(ag + a1t + ast?) =
(apt+ %t*+ %¢%). Find the matrix representation of T' with respect
to the basis given in each of the following.

(a) By = {1+t,1—t,t*}, By = {1,t, 2,13},

(D) Ey = {1,1+t, 1+t +12}, By ={1,1 4+, 1+t 4+ 13},

(c) By ={t?,t,1}, Bo = {1, 1 +t, 1+t + 12,1+t + >+ 3},

2.5 Rank and Nullity

Let V7 and Vs be vector spaces and T : Vi — V5 be a linear transfor-
mation. Then it can be easily seen that the sets

R(T):{T$Z$€V1}, N(T):{xev'lTx:O}
are subspaces of V] and V5, respectively.

Definition 2.5 The subspaces R(T) and N(T') associated with a
linear transformation 7" : V3 — V5, are called the range space of T’
and null space of T, respectively. O

Definition 2.6 The dimension of R(T) is called the rank of T,
denoted by rank 7', and the dimension of N(T') is called the nullity
of T, denoted by null T'. O

Let T : Vi — V5 be a linear transformation. Clearly, 1" is onto or
surjective if and only if R(7T") = V. Using the linearity of 7', it can
be seen that ( Verify)

e T is one-one if and only if N(T') = {0}.
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Theorem 2.2 Let T : Vi — Vo be a linear transformation. If
{u1,...,un} is a basis of V1, then R(T) = span{Tu1,...,Tun}.

Proof. Let {uy,...,u,} be a basis of V.

Clearly, span{Tuq,...,Tu,} C R(T). To show the other-way
inclusion, let y € R(T') and let € V4 be such that Tx = y. Since
{w1,...,u,} is a basis of Vi, = Y1 | ayu; for some oy, ..., in
F. Hence, y =Tz =", o;Tu; € span{Tu1,...,Tu,}. |

By the above theorem, we have
e rank (7') < dim (V4).

Theorem 2.3 Let T : Vi3 — Vo be a linear transformation. The we
have the following.

(1) If T is one-one and uy,...,ux are linearly independent in V7,
then Tuy, ..., Tu are linearly independent in Vs.

(2) If ui,...,uy are in Vi such that Tuq,...,Tu, are linearly in-
dependent in Vo, then uq,...u, are linearly independent in V7.

Proof. (1) Suppose T is one-one and w1, ..., u are linearly inde-
pendent in Vi. To show that Tuq,...,Tu; are linearly independent
in V5. For this, let aq,...,a € F be such that

atTuy + -+ apTup = 0. (*)
We have to show that a; = 0,...,a; = 0. Now, (x) implies that

T(ojui+---+agug) = 0, so that aquy +- - -+ agur, € N(T'). Since T’
is one-one, we have N (T = {0} so that aju; + - - - + agur = 0. Now,

linearly independence of uq,...,u; implies that a; = 0,...,a; = 0.
(2) Suppose uq,...,u, are in V4 such that Tuy,...,Tu, are lin-
early independent in V5. To show that ui,...,u, are linearly inde-

pendent in V;. For this, let aq,...,ar € F be such that

ajuy + -+ agug = 0. ()
We have to show that a; = 0,...,a; = 0. From (xx), we have
T(oiuy + -+ 4+ agug) = 0, ie., ayTuy + -+ + axTu = 0. Since
Tuq,...,Tu, are linearly independent, a; =0,...,ar =0. |

As a corollary to the above two theorems, we have the following.
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Theorem 2.4 Let Vi and Vo be finite dimensional vector spaces of
the same dimension, and let T : Vi — Vo be a linear transformation.
Then T is one-one if and only if it is onto.

Proof. Let uy,...,u, in Vi form a basis of V4. Then by The-
orem 2.3(1), {Tui,...,Tu,} is linearly independent in V5. Since
dim (Vo) = n, {Tuy,...,Tu,} is a basis of Vo. Hence, by Theorem
2.2, R(T) =span{Tuy,...,tu,} = Va. Hence, T is onto.

Conversely, suppose that 7' is onto, i.e., R(T) = V5. By Theorem
22, Vo = R(T) = span{Tuy,...,tu,} = Va. Since dim (V3) = n,
{Tuy,...,Tuy,} is a basis of V5. Now, let x € V; be such that Tz = 0.
Let ai,...,a, € F be such that z = > ; ayu;. Thus, we have
T, au;) = 0, ie, Y aTu; = 0. Since Tuq,...,Tu, are
linearly independent in V5, we have a; = 0,...,a = 0. Thus,
x = 0. Thus, we have shown that T'r = 0 implies x = 0. Hence, T is
one-one. 1

The above theorem need not be true if the spaces involved are
infinite dimensional.

EXAMPLE 2.14 Let V be the vector space of all sequences. Define
T1:V—->VandTy:V =V by

Ty (a1, 0,...) = (0,a1,00,...), (aj,ae,...)EV,
To(ar,ag,...) = (a9, as,ay,...), (a1,az,...)€V.
We observe that
e T3 and T are linear transformations;
e T is one-one, but not onto;
e 75 is onto, but not one-one.

The above T7 is called a right shift operator and T5 is called a left
shift operator on V.

Theorem 2.5 IfV; and Vs are finite dimensional vector spaces, then
Vi >~ Vy <= dim (V}) = dim (V2).

Theorem 2.6 Let V and W be finite dimensional vector spaces and
T:V — V be a linear transformation. Let Vy ne a subspace of V
such that V.= N(T) & Vy. Then Vo ~ R(T).
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Proof. Let {uy,...,uxr} be a basis of N(T), and let {v1,...,vp}
be a basis of Vj. Define Ty : Vo — R(T) by

y4 V4
TO(ZO%U@') = Z%‘Tvu (o1, ...,ap) € F
=1 =1

It can be easily verified (verify!) that Tj is a bijective linear trans-
formation. I

As a corollary to the above theorem, we have the following.

Theorem 2.7 (rank-nullity theorem) Let V' and W be vector
spaces and T -V — W be a linear transformation. Then

rank (7') 4+ null (T') = dim (V).

Definition 2.7 A linear transformation T : V — W is said to be of
finite rank if rank T < oo. O

Exercise 2.7 Let T : V7 — V5 be a linear transformation between
vector spaces V7 and V,. Show that T is of finite rank if and only
if there exists n € N, {vy,...,v,} C Vo and {f1,..., fn} C L(V1,F)
such that Az =", fj(v)v; forallz € Vi. 4

2.5.1 Product and Inverse

The following theorem can be proved easily (Ezercise).

Theorem 2.8 Let Vi, Vo, V3 be vector spaces, and let Ty : Vi — Vs
and Ty : Vo — V3 be linear transformations. Then T : Vi — V3

defined by
T(z) =T5(Ti(x)), xzeW

is a linear transformation.
Definition 2.8 Let T1,7T5,T be as in Theorem 2.8. Then the lin-

ear transformation T is called the product of T5 and 77, and it is
denoted by T5T7. O

Note that
Ty € L(V1,Va), Ty € L(Va2,V3) = ToT1 € L(V4, V3)

and if V4 = Vo = V3 =V, then 1115 and T5T; are well-defined and
they belong to L(V).
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Theorem 2.9 Let Vi, Vo, V3 be finite dimensional vector spaces,
and let Ty : V1 — Vo and Ty : Vo — V3 be linear transformations. Let
FE1, Es, E5 be bases of Vi, Va, V3, respectively. Then

[TQTI]ES,EH = [T2]E'3,E2 [Tl]EQ,El'

Proof. Let By :={u1,...,un}, B2 :={v1,...,om}, B3 :={wy,...,wi}

be ordered bases of Vi, Vs, V3, respectively. Let

(T B,y = (aij), [T2lEsBs = (bij)-

That is,
m k
Tyuj = Zaiﬂ)u Tovj = Z bijw;.
=1 =1
Then,
m m
TQTluj = T2 ( Z CMj’Ug) = Z angQUg
/=1 /=1
m k k m
ST TR o PR
/=1 =1 =1 /(=1

Thus, [15T1] gy, 5 = (cij), where ¢;; = > % bigagj. Hence, [I2T1] g, B,
is the matrix [15] gy 5, [T1] s, By - b

Let V be a finite dimensional vector space and let E = {u1, ..., u,}
be an ordered basis. Then we know that, for every x € V, there ex-
ists a unique (ay,...,an) € K" such that © = " | aju;. Let us use
the notation [z]g for the column vector with entries o, ..., ay, that
is,

[2]g = [a1,...,an]T.

We observe (verify!) that for z,y € V and a € K,
(2] =0 <= 2=0, [z+ylp=[z]g+[ylE, [oz]p=alz]p.

In fact, the map x — [z]|p is a linear isomorphism from V onto K".

Now, if W is a finite dimensional vector space and F' = {v1,..., v}
is an ordered basis of W, and T : V' — W is a linear transformation,
then we see (verify!) that

[TI]F = [T]FyE[x]E VeeV.
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Hence, it follows that
[Tujlr = [T)reujle = [Tree; Vji=1,....,n.
Thus, [T'uj]r is the j-th column of [T]F, E.

Theorem 2.10 Let V and W be a finite dimensional vector space
and let E = {uy,...,un} and F = {v1,..., vy} be an ordered bases
of V. and W, respectively, and let T : V — W be a linear transforma-
tion. Then T is one-one if and only if columns of [T|r r are linearly
independent.

Proof. Recall that T' is one-one iff N(7') = 0. Hence, T is not
one one-one iff 3z # 0 in V such that Tz = 0 iff I (ay,...,an) #0
such that T'(ajuj + - -+ + apuy) = 0. But,

[T(cruy + -+ 4+ anup)|rp = a1 [T(ur)]p + -+ + an[T(un)]F.

Thus, T is not one one-one iff [T'(uy)]p,..., [T (u,)]F are linearly
dependent in K™, that is, iff the columns of [T]p g are linearly de-
pendent. 1

Theorem 2.11 Let V and W be finite dimensional vector spaces,
and AV — W be linear transformation. Then A is bijective if and
only if there exists linear transformation B : W — V' such that

BA=1y, AB=ly,
where Iy and Iy are the identity operators on' V. and W, respectively.

Proof. Suppose A is bijective. Let B : W — V be defined by
By = x for y € W, where x € V is the unique vector in V such
that Ax = y. Then, it can be seen that B is a linear transformation
satisfying

BAr =2z, ABy=y VzeV,yeW.

If B: W — V is a linear transformation such that
BAx =z, ABy=y VzeV,yeW,

then for every y € W, if € V is the unique vector in V' such that
Ax =y, then
By = BAx = x = BAx = By.
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Hence, B = B.
Conversely, suppose B : W — V is a transformation such that
BAxr=x, ABy=y VzeV,yeW.
Then, for z € V,
Ar =0= 2 =BAz =0

so that A is one-one. Also, for every y € W, ABy = y so that A is
onto as well. [

Definition 2.9 Let A : V — W be a bijective linear transformation.
Then the unique linear transformation B : W — V obtained as in
Theorem 2.11 satisfying

BA =1y, AB=Iy,
is called the inverse of A, and it is denoted by A~ O

We observe that if T} : Vi — V5 and 15 : Vo — V3 are bijective
linear transformations, then

(TyTy) ™ =177,
Exercise 2.8 Prove the last statement.

Theorem 2.12 Let V and W be finite dimensional vector spaces,
and let A : V. — W be linear transformation. Then we have the
following.

(1) A is one-one if and only if there exists a linear transformation
B: W — V such that BA = Iy.

(2) A is onto if and only if there exists a linear transformation

B: W — V such that AB = Iyy.

Proof. (1) Suppose A is one-one. Let Ag : V — R(A) be defined
by Apx = Az for all x € V. Then, it can be see that Ay is a
bijective linear transformation. Let Wj be a subspace of W such
that W = R(T) @ Wy. Define B: W — V by

By = Ay, yeW,

where yg € R(A) is the unique vector such that y — yo € Wy. Then
we have

BAx:Agle:AglAga::a? VrxeV.
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(2) Suppose A is onto. Let Vj be a subspace of V such that V' =
N(T) @ Vp. Define Ay : Vj — W by Apgx = Az for all x € V. Then,
it can be see that Ag is a bijective linear transformation. Define
B: W =V by

By = Aaly, ye W

Then we have
ABy:AAaly:AoAaly:y VyeW.
This completes the proof. |

Having defined product of operators, we can define powers of
operators.

Definition 2.10 For A € L(V) and n € N, A" : V — V is defined
inductively by

A'(z) = A (A" (2)), reX,

where A°(z) := x for every x € V. O

Using powers of operators, we can define polynomials of an
operator.

Definition 2.11 For A € L(V) and for a polynomial p € P, say
p(t) = a1 +ait+-- -+ ant™, the operator p(A) : V.— V is defined by
p(A)=arl +a A+ -+ a, A" O

Exercise 2.9 Let V and W be finite dimensional vector spaces of
the same dimension, and let T : V' — W be a linear transformation.
Let E and F be ordered bases of V' and W, respectively. Show that
Show det[T]r f is independent of the bases E and F'.

2.5.2 Change of basis

Let V be a finite dimensional vector space and let £ and F' be any
two ordered bases of V. For z € V, how are the vectors [z]g and
[x]F related?

We know that there exists ()\;j) such that

n
'Uj:Z)\ijuiy j=1,...,n. (*)
=1
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If x = Z?:l ajuj = Z?:l Bjvj, then we have

n

i QiU = i Bjv; = i Bj ( i )\ijuz‘) => (i Aijﬂj)%‘-
i=1 =1 =1 =1 =1

i=1 j=

Hence,
n
a; = E )\z’jﬁj-
=1

Thus,
[z|p = J[z]p, where J:= (\i).

From (x), we also observe that

n
Ivj:E ajjui, j=1,...,n
i=1

so that
Uer = (ai) =J, [z]p =] rl]p.

The above matrix is the matrix corresponding the change of basis F
to F', called the change of basis matrix.

Now, let V and W be finite dimensional vector spaces and let
T : V — W be a linear transformation. Let E and E be ordered
bases of V, and F and F be ordered bases of W. How the matrices
[T]r,g and [T 5 are related?

Note that

Mg g = Llp p[Tlrelhlp g

where I; and I are the identity operators on V' and W, respectively.
Also,

L plhlp s =[Mlge Ll pllers = T2lp 5

It can be seen that, for any basis E of a finite dimensional vector
space, [I|gg is the identity matrix (J;;). Hence,

[11],;’1]; =[] g [IQ];%}F = [Llp p
so that

Thus, if .
E={uy,...,un}, FE={t,...,0,},
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F:{vl,...,vm}, F:{’F)l,...,’f)m},

then find the matrices J; and Jy corresponding to the linear trans-
formations
Uj = ﬂj and Vj > 17]‘

on V and W, respectively, then
[Tp,

In particular, if V. = W, E = F, E = F, then we have
[T 5 = Ji ' [T)eph

Definition 2.12 Matrices A € K™*™ and B € K™*™ are said to
be equivalent if there exists invertible matrices P € K™*" and Q €
K™*™ guch that

= J, T ppJi.

esfy

B=Q 'AP.

Square matrices A € K™ and B € K"*™ are said to be similar if
there exists an invertible matrix P € K™*™ such that

B=P 'AP.
O

Thus, if T': V — V is a linear transformation on a finite dimen-
sional vector space V and if E and F are bases of V, then [T|gg is
similar to [T]rp.

2.5.3 Eigenvalues and Eigenvectors

Let A:V — X be a linear operator on a vector space V.
A scalar ) is called an eigenvalue of A if there exists a nonzero
vector x € X such that
Ar = Az,

and in that case, x is called an eigenvector of A corresponding to
the eigenvalue \.

The set of all eigenvectors of A corresponding to an eigenvalue,
together with the zero vector, is called an eigenspace of A, and the
set, of all eigenvalues of A is called the eigenspectrum of A.

We denote the eigenspectrum of A by oeig(A).

Thus, A € F is an eigenvalue of A if and only if A — Al is not
injective, and in that case, N(A—\I) is the corresponding eigenspace
of A.
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EXAMPLE 2.15 The conclusions in (i)-(vi) below can be verified
easily:

(i) Let A : R3 — R3 be defined by
A (a1, a0,a3) = (a1, 01 + ag, a1 + ag + as)

Then oeijg(A) = {1} and N(A —I) =span{(0,0,1)}.

(i) Let A : F2 — F? be defined by A4 : (a1, a2) = (o, —aq). If
F =R, then A has no eigenvalues, i.e., eig(A) = @.

(iii) Let A be as in (ii) above. If F = C, then oejg(A) = {4, —i},
N(A —il) =span{(1,7)} and N(A+ i) =span{(1, —i)}.

(iv) Let V' = ¢gp, and let (A,) be a sequence of scalars. Let
A:V — X be defined by

(Az)(i) = Njz(i) Vxe X,ieN

Then oeig(A) = {A1, A2, ...}, and for each j € N, e; is an eigenvector
corresponding to the eigenvalue A;. In case A1, Ag,... are distinct,
then N(A — A\;I) = span{e;} for all j € N. Here, e; € cq is such
that e;(i) = 6;5, for 4,j € N.

(v) Let A:P — P be defined by

(Az)(t) = tz(t), xeP.

Then o¢ig(A) = @.
(vi) Let X be Pla,b] and A : V — X be defined by

(Az)(t) = %x(t), x€P.

Then oeig(A) = {0} and N(A) = span {x}, where z((t) = 1 for all
t € la,b].

Existence of an eigenvalue

From the above examples we observe that in those cases in which
the eigenspectrum is empty, either the scalar field is R or the vector
space is infinite dimensional. The next result shows that if the space
is finite dimensional and if the scalar field is the set of all complex
numbers, then the eigenspectrum is nonempty.

Theorem 2.13 Let X be a finite dimensional vector space over C.
Then every linear operator on X has at least one eigenvalue.
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Proof. Let X be an n-dimensional vector space over C, and A :
V' — X be a linear operator. Let x be a nonzero element in X. Since
dim X = n, the set {x, Az, A%z, ..., A"z} is linearly dependent. Let
ag,ai - .. ,a, be scalars with at least one of them being nonzero such
that
apxr + ajAx + - -+ + ap, A"z = 0.

Let k =max{j:a; #0, j=1,...,n}. Then writing

we have

p(A)(x) = 0.
By fundamental theorem of algebra, there exist Aq,..., Ag in C such
that

p(t) = ar(t = A1)t — A2) ... (£ — Ak).

Thus, we have

(A= MI)(A=XoI)... (A= N)(2) = p(A)(z) = 0.

The above relation shows that at least one of A — M1, ..., A— M\,1
is not injective so that at least one of A1,..., A\; is an eigenvalue of
A

Theorem 2.14 Let \i,..., )\, be distinct eigenvalues of a linear
operator A : V. — X with corresponding eigenvectors ui,...,Un,
respectively. Then the set {uy,...,u,} is linearly independent.

Proof. We prove this result by induction. The result is obvious
if n = 1. Hence, we consider the case of n > 1. Let k € N be such

that k& < n, and assume that {uq,...,ux} is linearly independent.
We have to show that {ui, ..., ug, urs1} is linearly independent. For
scalars ¢y, ..., g, Crt1, let

T =ciu] + -+ CpUk + Crp1Uk41-

We have to show that, if x =0, then ¢; =0 for j =1,...,k + 1.
We note that

Az = ci\ur + - - 4 CRARUE + Chp1 Mg+ 1Uk+1
so that

Az — Mgz = 1M — M) + -+ + e Apr1 — Ae)ug.
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Now suppose that £ = 0. Then we have Az — A\p112 =0, i.e.,
1A — Mgr)ur + -+ (Mg — A1) ug = 0.

From this, using the fact that {u1,...,ux} is linearly independent
in X, and Aq,...,Ap, Ap1 are distinct, it follows that ¢; = 0 for
j=1,...,k. Therefore, 0 = x = cxyriugy1 so that cxy1 = 0. This
completes the proof. I

By the above theorem we can immediately infer that if V' is finite
dimensional, then the eigenspectrum of every linear operator on X
is a finite set.
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Inner Product Spaces

3.1 DMotivation

In Chapter 1 we defined a vector space as an abstraction of the
familiar Euclidian space. In doing so, we took into account only two
aspects of the set of vectors in a plane, namely, the vector addition
and scalar multiplication. Now, we consider the third aspect, namely
the angle between vectors.

Recall from plane geometry that if & = (x1,22) and ¥ = (y1, y2)
are two non-zero vectors in the plane R?, then the angle 0, between
Z and ¥ is given by

g . Ty + T2Y2
OV T

where for a vector @ = (uy,us) € R?, |i| denotes the absolute value

of the vector , i.e.,
] = Ju? +u3,

which is the distance of the point (u,u2) € R? from the coordinate
origin.

We may observe that the angle 6, , between the vectors ¥ and
is completely determined by the quantity x1y; + x2y2, which is the
dot product of ¥ and y. Breaking the convention, let us denote this
quantity, i.e., the dot product of ¥ and ¥, by (Z, ), i.e.,

(Z,9) = x1y1 + x2y2.

A property of the function (Z, %) — (Z,¢) that one notices immedi-
ately is that, for every fixed 7 € R?, the function

z e (T,§), FeR

50
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is a linear transformation from R? into R, i.e.,

(Z+u,y) = (Z,9) + (4,7), (o, §) = (@, y) (3.1)

for all Z, % in R?. Also, we see that for all #, i in R?,

(Z,7)) >0, (3.2)
(Z,7) =0 <= =0, (3.3)
(@, 9) = (¥, ). (3.4)

If we take C? instead of R?, and if we define (Z,9) = x1y1 + x2y2, for
Z,7 in C?, then the above properties are not satisfied by all vectors
in C2. In order to accommodate the complex situation, we define a
generalized dot product, as follows: For Z, i in F2, let

(Z, 7))« = 2101 + X272,

where for a complex number z, Z denotes its complex conjugation.
It is easily seen that (-, -). satisfies properties (3.1) — (3.4).

Now, we shall consider the abstraction of the above modified dot
product.

3.2 Definition and Some Basic Properties

Definition 3.1 (Inner Product) An inner product on a vector
space V' is a map (x,y) — (x,y) which associates each pair (z,y)
of vectors in V, a unique scalar (x,y) which satisfies the following
axioms:

(

(

(©) (@+y,2)=(x,2) +(y,2) Va,y,z€V,

(d) (az,y) = af{x,y) VaeFandVz,y € V, and

(e) (z,y) = (y,x) Va,yeV.
Definition 3.2 (Inner Product Space) A vector space together
with an inner product is called an inner product space.

If an inner product (-,-) is defined on a vector space V, and if V}
is a subspace of V, then the restriction of (-,-) to Vo x Vjp, i.e., the
map (z,y) — (z,y) for (z,y) € Vy x Vp is an inner product on Vj.



52 Inner Product Spaces

Before giving examples of inner product spaces, let us observe
some properties of an inner product.

Proposition 3.1 Let V' be an inner product space. For a given
yeV, let f:V —TF be defined by

f@)=(z,y), zeV
Then f is a linear functional on V.

Proof. The result follows from axioms (c¢) and (d) in the definition
of an inner product: Let z,2’ € V and a € F. Then, by axioms (c)
and (d),

flet+a) = (z+a'y) = (@,y) + (2, y) = fx) + f2),

flaz) = {az,y) = alz,y) = af(2).

Hence, f is a linear transformation. I

Proposition 3.2 Let V' be an inner product space. Then for every
z,y,u,v in 'V, and for every a € I,

<$,U—|—U> = <:c,u>—|—(x,v>, <$7O‘y> :d<xay>'

Proof. The result follows from axioms (c),(d) and (e) in the def-
inition of an inner product: Let x,y,u,v in V and o € F.

(T, utv) = (u+v,z} = (u, z) + (v, z) = (u, ) +(v, ) = (z,u)+(z,v),

(z,09) = (ay,z) = aly,z) = a(z,y).
This completes the proof. I

3.3 Examples of Inner Product Spaces

EXAMPLE 3.1 For x = (ay,...,ap) and y = (B1,...,0,) in F?,
define

(w,y) = a;B;.
=1

It is seen that (-,-) is an inner product on F™.

The above inner product is called the standard inner product
on F™.
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EXAMPLE 3.2 Suppose V is a finite dimensional vector space, say
of dimension n, and F := {uy,...,u,} is an ordered basis of V. For

=" ou, Y=y i By in V, let

<$7 y)E = Z al/B’L
=1

Then it is easily seen that (-,-)p is an inner product on V.
More generally, if T : V' — F" is a linear isomorphism, then

<1’, y>T = <T$, Ty>F"
defines an inner product on V. Here, (-,-)pn is the standard inner
product on F™.

EXAMPLE 3.3 For f,g € C|a,b], let

o= [ 10
This defines an inner product on C|a, b]: Clearly,
b
= [1r0Paz0 vfecla,

and by continuity of the function f,

b
(fyi= [P st =0 = f6)=0 Vi o
The other axioms can be verified easily.

EXAMPLE 3.4 Let 7y,...,Th+1 be distinct real numbers. For

p,q € Pp, let
n+1

= 3" p(r)a(m)
=1

This defines an inner product on P,,: Clearly,

n+1
P = Ip@E)IF >0 VpeP,,
i=1
and by the fact that a nonzero polynomial in P,, cannot have more
than n distinct zeros, it follows that

n+1
=3 P =0 < p=o.

The other axioms can be verified easily.
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3.4 Norm of a Vector

Recall that the absolute value of a vector & = (x1,x2) € R?, is given

by
|Z] = /2% + 23

Denoting the standard inner product on R? by (z, x)s, it follows that

7] = v/ {z, z)2.

As an abstraction of the above notion, we define the norm of a
vector.

Definition 3.3 (Norm of a Vector) Let V be an inner product
space. Then for x € V', then norm of x is defined as the non-negative
square root of (x,x), and it is denoted by ||z, i.e,

||| := \/m, xeV.

Exercise 3.1 If x is a non-zero vector, then show that u := z/||z||
is a vector of norm 1. ¢

Recall from elementary geometry that if a,b are the lengths of
the adjacent sides of a parallelogram, and if ¢,d are the lengths of
its diagonals, then 2(a? + b?) = ¢ + d%. This is the well-known
parallelogram law. This has a generalized version in the setting of
inner product spaces.

Theorem 3.3 (Parallelogram law) For vectors x,y in an inner
product space V,

lz + yl* + o = yl* = 2 (l=]* + ly]1*) -

Exercise 3.2 Verify the parallelogram law (Theorem 3.3). ¢

3.5 Orthogonality and Orthonormal Bases
Recall that the angle 6, , between vectors Z and % in R? is given by

(f’ZDQ

|2 g]

cos Oy, =

Hence, we can conclude that the vectors ¥ and ¥ are orthogonal if
and only if (Z,%)2 = 0. This observation motivates us to have the
following definition.
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Definition 3.4 (Orthogonal vectors) Vectors x and y in an inner
product space V are said to be orthogonal to each other or x is
orthogonal to y if (x,y) = 0. In this case we write x L y, and read x
perpendicular to y, or x perp y.

Note that
(a) for x, y in V, x is orthogonal to y if and only if y is orthogonal
tox,ie,x Ly < y Lz and

(b) the zero vector is orthogonal to every vector, i.e., 0 L z for
allz € V.

Theorem 3.4 Let V be an inner product space, and x € V. If
(x,y) =0 for ally € V, then x = 0.

Proof. Clearly, if (x,y) =0 for all y € V, then (z,z) = 0 as well.
Hence z =0 |

As an immediate consequence of the above theorem, we have the
following.

Corollary 3.5 Let V be an inner product space, and ui,us, ..., U,
be linearly independent vectors in V. Let x € V. Then

(,uj) =0 Vie{l,....,n} <= (z,y)=0 Vyespan{ui,...,u,}.

In particular, if {uy,ua,...,uy} is a basis of V., and if (x,u;) = 0
forallie{1,...,n}, then z = 0.

Exercise 3.3 If dimV > 2, and if 0 # « € V, then find a non-zero
vector which is orthogonal to x. ¢

EXAMPLE 3.5 Consider the standard inner product on F". For
each j € {1,...,n}, let

1 ifi =y,

0 ifi#j.

It is easily seen that e; L e; for every ¢ # j. Also, e; +¢; L e; —¢;
for every i,7 € {1,...,n}.

€; = ((51]‘,52]', v 75nj)7 where 5ij = {

EXAMPLE 3.6 Consider the the vector space C[0,27] with inner
product defined by

27

(f,9) = ; f(t)g(t)dt
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for f,g € C[0,2x]. For n € N, let
up(t) :==sin(nt), v, (t) = cos(nt), 0<t<2nr.
Since
2 2
/ cos(kt)dt =0 = / sin(kt)dt Vk€Z,
0 0
it follows that, for n # m,

(Uny um) = (Un, Vm) = (Un, Vy) = (Up, V) = 0.

Recall from elementary geometry that if a, b ¢ are lengths of
sides of a right angled triangle with ¢ being the hypotenuse, then
a® +b? = ¢?. This is the Pythagoras theorem Here is the generalized
form of it in the setting of an inner product space.

Theorem 3.6 (Pythagoras theorem) Suppose x andy are vectors
in an inner product space which are orthogonal to each other. Then

lz + yl* = l|=[* + [lyl|*.
Proof. Left as an exercise. |

It is easily seen that, if the scalar field is R, then the converse of
the Pythagoras theorem also holds. That is,

Theorem 3.7 IfV is an inner product space over R, and if x,y € V
are such that ||z + y||> = ||z||? + ||ly||?, then z L y.

However, if the scalar field is C, then the converse of Pythagoras
theorem need not be true . A simple example shows this: Let X = C
with standard inner product, and for nonzero real numbers «, 8 € R,
let x = a, y =14 5. Then we have

lz +ylI? = lla +i8I* = |af* + 81> = l|z[* + I,

but (x,y) = —iaf # 0.

Definition 3.5 (Orthogonal to a set) Suppose S is a subset of an
inner product space V, and x € S. Then zx is said to be orthogonal
to S if (x,y) =0 for all y € S. In this case, we write z L S. The set
of vectors orthogonal to S is denoted by S*, i.e.,

Sti={reV:.z LS}



Orthogonality and Orthonormal Bases 57

Exercise 3.4 Let V be an inner product space.
(a) Show that V+ = {0}.
(b) If S is a basis of V, then show that S+ = {0}. ¢

Definition 3.6 (Orthogonal set) Suppose S is a subset of an
inner product space V. Then S is said to be an orthogonal set if
(x,y) = 0 for all distinct =, y € S, i.e., for every z,y € S, x # y
implies x L .

Theorem 3.8 Let S be an orthogonal set in an inner product space
V. If0& S, then S is linearly independent.

Proof. Suppose 0 ¢ S and {uy,...,u,} € S. If ay,...,qy are
scalars such that aju; + asus + ... + apu, = 0, then for every
je{l,...,n}, we have

n

0= <Z aiui,uj> = Z<Oéiuiauj> = Zai<ui,uj'> = aj(uy, uj).
i=1

=1 i=1

Hence, a; =0 for all j € {1,...,n}. 1

Definition 3.7 (Orthonormal set) Suppose S is a subset of an
inner product space V. Then S is said to be an orthonormal set if it
is an orthogonal set and ||z|| =1 for all z € S.

By Theorem 3.8, it follows that every orthonormal set is linearly
independent. In particular, if V' is an n-dimensional inner product
space and F is an orthonormal set consisting of n vectors, then F is
a basis of V.

Definition 3.8 (Orthonormal basis) Suppose V is a finite di-
mensional inner product space. An orthonormal set in V' which is
also a basis of V is called an orthonormal basis of V.

EXAMPLE 3.7 The set E := {ej,e2,...,e,} in Example 3.5 is an
orthonormal basis of F™ (with respect to the standard inner prod-
uct).

Theorem 3.9 Suppose V' is an inner product space, and {uy, ..., uy}
is an orthonormal subset of V. Then, for every x € span{u,...,u,},

n

n
r =) {x,u)uj, 2z = [, ug) .
j=1

J=1
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Proof. Let x € span{u1,...,uy,}, Then there exist scalars a1, ag, . .., oy
such that
T = aiul + -+ apupy.

Hence, for every i € {1,...,n},

(x,u;i) = ag(ur, ui) + - + ap(up, u;) = .

and
n n n n
HJC”Q = (z,2) = <Z aiuiazajuj> = Zzaidj<ui,uj>
=1 j=1 i=1 j=1
n n
= D lail’ =) {z,u)?
i=1 i=1

This completes the proof. I

The proof of the following corollary is immediate from the above
theorem.

Corollary 3.10 (Fourier expansion and Parseval’s identity)
If {uy,...,up} is an orthonormal basis of an inner product space V
, then for every x € V,

n

n
= (wujuy, P =D [’
j=1

j=1
Another consequence of Theorem 3.9 is the following.

Corollary 3.11 (Bessel’s inequality) Suppose V' is an inner prod-
uct space, and {uy,...,u,} is an orthonormal subset of V.. Then, for
everyx €'V,

n
> e ug)? < .
j=1

Proof. Let x € V, and let

n

Yy = Z(l‘, ul>ul
i=1

(2

Since y € span{uy,...,uy}, by Theorem 3.9,

n
Iyll? = Ky, u) .
i=1
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Note that (y,u;) = (z,u;) foralli € {1,...,n}, e, (x—y,u;) =0 for
all i € {1,...,n}. Hence, (x —y,y) = 0. Therefore, by Pythagoras
theorem,

n
Izl = llyll® + llz = yl* = lyl® = Dz, u) .
i=1

This completes the proof. |
EXAMPLE 3.8 Let V = C]0,2n] with inner product (z,y) :=

2m N

o z(t)y(t)dt for x,y in C[0,27]. For n € Z, let u, be defined by
un(t) = '™, t €10, 2m].
Then it is seen that

2T .
_ i (n—m)t _ 1 if n= m,
{tn; tim) /0 ¢ dt { 0 ifn#m.

Hence, {u, : n € Z} is an orthonormal set in C[0,27]. By Theorem
3.9,ifz €span{uj:j=—-N,-N+1,...,0,4,...,N},

N . 27T .
x = Z a,e'™ with a,=— z(t)e "t

Now, suppose that V' is an n-dimensional inner product space,
and {u1,...,u,} be an orthonormal basis of V. Then, by Corollary
3.10, every x € V' can be written as

n

xr = Z(x,w)uj.

=1

Hence, for every linear functional f: V — F,

fl@) = > (w,u5)f(u))
j=1
= > (x, fuy)uy)

j=1
_ <x]§::1f<uj>u]>

Thus, we have given a constructive proof for the following theo-
rem.




60 Inner Product Spaces

Theorem 3.12 (Riesz representation theorem) Let V' be a finite
dimensional inner product space. Then for very linear functional
f:V =T, there exists yy € V such that

f(x) = (z,yr) VYaxeV.

It is easily seen that the vector y; in the above theorem is unique.
Indeed, if y1 and yo are in V such that

f(x) = <x7y1>7 f(.’L') = <377y2> Ve V7
then
(x,y1 —y2) =0 Vz eV
so that by Theorem 3.4, y; —y2 =0, i.e., y1 = yo.

Exercise 3.5 Suppose V is an n-dimensional inner product space
and {u,...,u,} be an orthonormal basis of V. Show that every
linear functional f : V — F can be written as

=Y flu)t;,

j=1

where, for each j € {1,...,n}, fj : V — F is the linear functional
defined by fj(z) = (z,u;), z € V. 4

3.6 Gram-Schmidt Orthogonalization

A question that naturally arises is: Does every finite dimensional
inner product space has an orthonormal basis? We shall answer this
question affirmatively.

Theorem 3.13 (Gram-Schmidt orthogonalization) Let V' be
an inner product space and ui,us, ..., U, are linearly independent
vectors in V. Then there exist orthogonal vectors vi,va, ..., v, in V
such such that

span {ug,...,ux} =span{vi,...,vx} Vke{l,...,n}.

In fact, the vectors vy,ve, ..., v, defined by
v1T = ul
 (uke1,vj)
V1 = Uktl —Zivj, k=1,2,...,n—1,
= (vv)

satisfy the requirements.



Gram-Schmidt Orthogonalization 61

Proof. We construct orthogonal vectors vi,ve,...,v, in V such
such that span {uy,...,ur} =span{vy,..., v} forall k € {1,...,n}.
Let v1 = uy. Let us write ug as

U = aul + va,

where « is chosen in such a way that vy := us — au; is orthogonal to
v, i.e., (ug —au,v1) =0, ie.,

_ {ug,v1)

(v, 1)
Thus, the vector
(ug,v1)
(v1,v1)
is orthogonal to v;. Moreover, using the linearly independence of
uy,ug, it follows that vy # 0, and span{uj,us} = span{vi,ve}.
Next, we write

Vo ‘= Uy —

Uz = (alvl + CMQ'UQ) + vs,

where v, g are chosen in such a way that vs := us — (v1 + agv?)
is orthogonal to v; and wvs, i.e.,

<U3 — (ozlvl + OéQUQ),1)1> =0, <U3 — (alvl + O(QUQ), ’L)2> =0.

That is, we take

(uz, v1) (u3,v2)
a1 = N a9 = .
<111, Ul> <U27 Uz)
Thus, the vector
R O N (T
(v1,v1) (v2,v2)

is orthogonal to v; and vs. Moreover, using the linearly independence
of uy,us, us, it follows that vs # 0, and

Span {Ul, uz, u3} = Span {Ulv V2, 1)3}‘

Continuing this procedure, we obtain orthogonal vectors vy, vo, ..., v,
defined by
(uk+1,v1) (uk+1,v2) (ukt1,vk)
Vg1 = Ukt1 — v — vg— ... — —

<v1, 'U1> <712, Uz) <Uk, Uk>
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which satisfy
span {uq,...,u;} =span{vy,..., v}

for each k € {1,2,...,k—1}. 1

Exercise 3.6 Let V be an inner product space, and let w1, uo, ..., u,
be orthonormal vectors. Define wy, wo, ..., w, iteratively as follows:

v

v1:=u; and wi = !

o]

and for each k € {1,2,...,n — 1}, let
b v
k+1
Vkg1 i= Ugg1 — Z<Uk+1awi>wi and Wiy = .
- ol
Show that {wq,ws,...,w,} is an orthonormal set, and
span {wi,...,wx} = span{uy,...,ux}, k=1,2,...,n. ¢

From Theorem 3.13, we can conclude the following.

Theorem 3.14 FEvery finite dimensional inner product space has an
orthonormal basis.

EXAMPLE 3.9 Let V = F? with standard inner product. Consider
the vectors u; = (1,0,0), ug = (1,1,0), uz = (1,1,1). Clearly,
w1, ug, uz are linearly independent in F3. Let us orthogonalize these
vectors according to the Gram-Schmidth orthogonalizaion procedure:

Take v1 = uy, and
vy = 1y — \U221)
(v1,v1)

Note that (vi,v1) = 1 and (ug,v1) = 1. Hence, va = ug — v; =
(0,1,0). Next, let

(ug,v1)  (ug,v2)

(v1,v1) (v2,v2)

V3 = ug —

Note that (va,va) = 1, (us,v1) = 1 and (u3,vs) = 1 Hence, vz =
U — V1 — U2 = (0,0, 1). Thus,
{(1,0,0),(0,1,0),(0,0,1)}

is the Gram-Schmidt orthogonalization of {u1, u2, us}.
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EXAMPLE 3.10 Again let V = F? with standard inner product.
Consider the vectors u; = (1,1,0), ug = (0,1,1), ug = (1,0,1).
Clearly, w1, ug, us are linearly independent in F3. Let us orthogonal-
ize these vectors according to the Gram-Schmidth orthogonalizaion
procedure:

Take v1 = uy, and

(ug, v1)
(v1,01)

Vg = ug —
Note that (v1,v1) = 2 and (ug,v;) = 1. Hence,
1
ve = (0,1,1) — 5(1, 1,0) = (-1/2,1/2,1).

Next, let

(ug, v1) o (us, va)

(v1,v1) (v2,v2)

Note that (va,v2) = 3/2, (uz,v1) =1 and (us,v2) = 1/2 Hence,
1 1

vs = (1,0,1) = 5(1,1,0) = o(~1/2,1/2,1) = (~2/3,2/3, 2/3).

V3 = ug —

Thus,
{(1,1,0),(-1/2,1/2,1),(-2/3,2/3,—-2/3)}

is the Gram-Schmidt orthogonalization of {u, ug, us}.

EXAMPLE 3.11 Let V =P be with the the inner product

1 PR
(prq) = / POTOd paeV

Let u;(t) = /7! for j = 1,2,3 and consider the linearly independent
set {u1,uz,ug} in V. Now let vi(t) = ui(t) = 1 for all t € [-1,1],
and let

<u27 U1>

(v1,v1)

Vo = U9 —

Note that
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Hence, we have vy(t) = ug(t) =t for all t € [—1,1]. Next, let

B (uz,v1) (u3,v2)
V3 = u3 — vl — V9.
(v1,v1) (v, vg)

Here,

1 1
<u3,v1):/ ug(t)vl(t)dt:/ t2dt:§,

-1 -1

1 1
(uz, vo) = /1 uz(t)vo(t) dt = /1t3dt—0.

Hence, we have v3(t) = t* — % for all ¢ € [~1,1]. Thus,

1
{1,t,t2—}
3

is an orthogonal set of polynomials.

Definition 3.9 (Legendre polynomials) The polynomials

Po(t),p1(t), p2(t) ...

obtained by orthogonalizing 1,t,¢2, ... using the inner product

1 PR
(prq) = / D d paeP,

are called Legendre polynomials.

It is clear that the n-th Legendre polynomial p,(t) is of degree n.
We have seen in Example 3.11 that

1

po(t) =1, pi(t)=t, pa(t) =t>— 3

3.7 Cauchy-Schwarz Inequality and Its
Consequences

Let us look at the arguments used in the construction of ve from
u1, u2 in the proof of Theorem 3.13: Suppose z and y are two nonzero
vectors. Then we can write z as sum of two orthogonal elements,
namely, u and v, where

_ (zy) I C )
(v, y)”
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The vector u can be thought of as the projection of the vector x onto
the span of y. Using this argument we prove an important result,
called Cauchy-Schwarz inequality.

Theorem 3.15 (Cauchy-Schwarz inequality) Let V' be an inner
product space, and x,y € V. Then

[{z, y)| < ]l llyll-

Equality holds in the above inequality if and only if x and y are
linearly dependent.

Proof. The result is obvious if either x = 0 or y = 0. Hence,
assume that both z and y are nonzero vectors. As we have explained
in the preceding paragraph, let us write £ = v + v, where

_lwy, o 2w
(v, y) (v, )
Then, by Pythagoras theorem,
2 2
ol = P + ol = =20 P + o = L5 o
Thus, [(z,y)| < ||z| |ly||. Equality holds in this inequality if and only
ifv:=o— g:z;y =0, i.e., if and only if z is a scalar multiple of y if

and only if x and y are linearly dependent. |1

As a corollary of the above theorem we have the following.

Corollary 3.16 (Triangle inequality) Suppose V is an inner prod-
uct space. Then for every x,y in 'V,

[+ yll < ] + [yl

Proof. Let x,y € V. Then, using the Cauchy-Schwarz inequality,
we obtain

Il + yl?

(x+y,z+y)

(z,2) + (z,y) + (v, 2) + (¥, )
lz]1* + lyllI* + 2 Re (z,y)
lz)1* + lyll* + 2 [{z, )|

lz)1* + lyll* + 2 [l |y]
(Nl + llyl)?.

Thus, ||z + y|| < ||z|| + ||y|| for every z,y € V. 1

VANVAN
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Exercise 3.7 Let V be an inner product space, and let z,y € V.
Then, show the following:

(a) [z = 0.

(b) ||z =0iff x = 0.

(¢) ||ax| = |a|||x| for all a € F..

(d) If |l +y|| = ||z|| + |ly||, then either y = 0 or z = ay for some

scalar a.
(e) [lx+ ay|| = ||z — ay|| Vo € F if and only if (x,y) =0. 4

Remark 3.1 For nonzero vectors z and y in an inner product space
V', by Schwarz inequality, we have

el
EF

This relation motivates us to define the angle between any two nonzero
vectors x and y in V as

9x7y = Cosfl <M> .
][ N1yl

Note that if z = cy for some nonzero scalar ¢, then 0, , = 0, and if
(x,y) =0, then 6, , = 7/2.
Definition 3.10 Suppose V is a vector space. A functionv : V — R
is called a norm on V if it satisfies the following axioms:

(a) v(z) >0forall z € V,and v(z) =0 iff x =0,

(b) v(x+y) <v(z)+v(y) for all z,y € V, and

(c¢) v(azx) = |alv(z) for all x € V and for all a € F.

Corollary 3.16 and Exercise 3.7 (a)-(c) shows that, in an inner
product space V, the function x + ||z| is a norm.

We have seen that, in an inner product space V, the norm | - ||
satisfies the parallelogram law. A natural question is whether every
norm v on a vector space V satisfies parallelogram law:

vz +y) + v (@ —y) = 22 (2) + 17 (y)]

The answer is, in fact, negative. To see this consider the following
examples.
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EXAMPLE 3.12 Let V = R2 For z = (v1,22) € R?, define
v(z) = |x1] + z2|. Then it is easily seen that v is a norm on R?. But
it does not satisfy the parallelogram law: Note that for z = e; + e
and y = e; — e9,

vie+y) =2, vie-y) =2 v =vy) =2
From these relations it follows that
Ve +y) +ri(z—y) =8, but 203 (z)+3(y)] = 16.

Thus, the above norm does not satisfy the parallelogram law.

EXAMPLE 3.13 For f € C[0,1], let

1
v(f) = / ().

Then it is easily seen that v is a norm on C]0,1]. But it does not
satisfy the parallelogram law: To see this consider

fy=t, gt)y=1-t VYtela,b.
Then we have
V(f)ZV(g)ZV(f—g)zé, v(f+g) =1

From these relations it follows that v does not satisfy the parallelo-
gram law.
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3.8 Best Approximation

In applications one may come across functions which are too com-
plicated to handle for computational purposes. In such cases, one
would like to replace them by functions of ”simpler forms” which
are easy to handle. This is often done by approximating the given
function by certain functions belonging to a finite dimensional space
spanned by functions of simple forms. For instance, one may want
to approximate a continuous function f defined on certain interval
[a, b] by a polynomial, say a polynomial p in P, for some specified n.
It is desirable to find that polynomial p such that

If=pl <If—dl Vqg&Pn

Here, ||.|| is a norm on Cf[a,b]. Now the question is whether such
a polynomial exists, and if exists, then is it unique; and if there is
a unique such polynomial, then how can we find it. These are the
issues that we discuss in this section, in an abstract frame work of
inner product spaces.

Definition 3.11 Let V be an inner product spaceand Vj be a sub-
space of V. Let x € V. A vector zg € 1} is a called a best approx-
imation of x from Vj if

|z — zol] < ||z — Yovel.

Proposition 3.17 Let V be an inner product space , Vyy be a subspace
of V, and x € V. If xg € Vi is such that x — xg L Vg, then xg is a
best approximation of x, and it is the unique best approximation of
x from Vj.

Conversely, if o € Vg is a best approrimation of x, then x —xqg L

.

Proof. Suppose xy € Vj is such that x —xzg L Vj. Then, for every
u € W,

lz—ull®> = [(z—20)+ (w0 — u)|?
= |l — zo]* + [lzo — ul*.

Hence
|z — ol < flz—vl|  VveW,

showing that xg is a best approximation.
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To see the uniqueness, suppose that vy € Vj is another best ap-
proximation of z. Then, we have

[l — ol <l —wol| and [l —woll <[z = wol|,

so that |[x — xg|| = |l@ — wvol|]. Therefore, using the fact that
(x — x0, 9 — vg) = 0, we have

lz = wol|* = [l — ol + [lvo — vol*.

Hence, it follows that ||zg — vo|| = 0. Thus vy = xo.
Conversely, suppose that xg € Vj is a best approximation of z.
Then ||z — z¢|| < ||z — ul| for all u € Vp. In particular, if v € V},

|z — 2ol < ||z — (x0+ av| VYaeTF.

Hence, for every a € T,

N

lz — o[ lz = (o + aw]|?

= ((z — o) + av, (z — z9) + av)
= |lz — z0|* = 2Re(z — 9, av) + |a?|v|*
Taking o = (z — z0,v)/||v]|?, we have

2
T — xo, v
(& — o, ) = W20V o0

[v]|2
so that
lz—zol® < |z — xo|]? — 2Re(x — z0,av) + |af?Ju]?
|<.’I) - 1‘0,?}>‘
= ||z — zo||? - —7H
[[v]|2

Hence, (z — zg,v) =0. 1

By the above proposition, in order to find a best approximation
of z € V from Vj, it is enough to find a vector zo € Vj such that
x —x9 L Vy; and we know that such vector zg is unique.

Theorem 3.18 Let V' be an inner product space, Vi be a finite di-
mensional subspace of V., and x € V. Let {uy,...,u,} be an or-
thonormal basis of Vo. Then for x € V, the vector

n

Ty 1= Z(:p,uﬁuz

i=1

is the unique best approximation of x from V.
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Proof. Clearly, zo := Y . ,(x,u;)u; satisfies the hypothesis of
Proposition 3.17. 1

The above theorem shows how to find a best approximation from
a finite dimensional subspace Vj, provided we know an orthonormal
basis of Vj. Suppose we know only a basis of V5. Then, we can find
an orthonormal basis by Gram-Schmidt procedure. Another way to
find a best approximation is to use Proposition 3.17:

Suppose {vi,...,v,} is a basis of Vy. By Proposition 3.17, the
vector x that we are looking for should satisfy (x — xg,v;) for every
i =1,...,n. Thus, we have to find scalars a1, ..., a, such that

n
<x—2ajvj, Ui>:0 Vi=1,...,n.
j=1

That is to find aq, ..., a, such that

n

Sy, vy = (@) Vi=1,...,n.

j=1

The above system of equations is uniquely solvable (Why?) to get
ai,...,ap. Note that if the basis {vy, ..., v,} is an orthonormal basis
basis of Vp, then o = (z,v;) for j=1,...,n.

Exercise 3.8 Show that, if {v1,...,v,} is a linearly independent
subset of an inner product space V, then the columns of the matrix
M := (ai;) with a;; = (vj,v;), are linearly independent. Deduce
that, the matrix is invertible. ¢

EXAMPLE 3.14 Let V = R? with usual inner product, and Vg =
{x = (z1,72) € R? : 1 = m2}. Let us find the best approximation of
x = (0,1) from Vj.

We have to find a vector of the form g = (o, @) such that z—zy =
(0,1) = (o, ) = (—a, 1 — ) is orthogonal to Vj. Since Vj is spanned
by the single vector (1,1), the requirement is to find « such that
(—a,1 — «) is orthogonal to (1,1), i.e., a has to satisfy the equation
—a+ (1 —a =0, ie, a = 1/2. Thus the best approximation of
x = (0,1) from Vj is the vector zg = (1/2,1/2).

EXAMPLE 3.15 Let V be the vector space C|0, 1] over R with the
inner product: (x,u) = fol x(t)u(t)dt, and let Vo = P;. Let us find
the best approximation of = define by z(t) = ¢* from space Vj.
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We have to find a vector xg of the form z¢(t) = ag + a1t such
that the function x — zg defined by (z — zo)(t) = t*> — ag — ayt is
orthogonal to Vj. Since Vj is spanned by u1, ug where u;(t) = 1 and
ug(t) = t, the requirement is to find ag,a; such that

1
(. —z0,u1) = / (t* — ag — art)dt =0,
0

1
(x — xo, ug) = / (t3 — agt — a1t?)dt = 0.
0

That is

1
/ (t2 —ap — alt)dt = [t3/3 - aot - a1t2/2](1) = 1/3 —ap — a1/2 = O,
0

1
/ (t3—apt—art?)dt = [t*/4—aot*/2—a1t? /3] = 1/4—ag/2—a1/3 = 0.
0

Hence, ag = —1/6 and a; = 1, so that the best approximation z( of
t? from P; is given by wo(t) := —1/63 + t.

Exercise 3.9 Let V be an inner product space and V[ be a finite
dimensional subspace of V. Show that for every x € V, there exists
a unique pair of vectors u,v with v € Vj and v € VOJ- satisfying
x =u+wv. In fact,

V=Vo+ Vi ¢

Exercise 3.10 Let V = C|0, 1] over R with inner product (z,u) =
fol x(t)u(t)dt. Let Vy = Ps. Find best approximation for z from Vj,
where z(t) is given by

(i) €', (ii) sint, (iii) cost, (iv)t*. @

3.9 Best Approximate Solution

In this section we shall make use of the results from the previous
section to define and find a best approximate solution for an equation
Az = y where A : V) — V5 is a linear transformation between vector
spaces V7 and Vs with V5 being an inner product space.

Definition 3.12 Let V7 and V5 be vector spaces with V5 being an
inner product space, and let A : Vi — V5 be a linear transformation.
Let y € Va. Then a vector g € V; is called a best approximate
solution or a least-square solution of the equation Az =y if

[Azo —yll < |[Au—yll  Vue Vi
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It is obvious that zg € V; is a best approximate solution of Az =
y if and only if yg := Axg is a best approximation of y from the
range space R(A). Thus, from Proposition 3.17, we can conclude the
following.

Theorem 3.19 Let Vi and Vo be vector spaces with Vo being an
inner product space, and let A : V1 — Vo be a linear transformation.
If R(A) is a finite dimensional subspace of Vi, then the equation
Ax =y has a best approximate solution. Moreover, a vector xg € Vi

is a best approximate solution if and only if Axg —y is orthogonal to
R(A).

Clearly, a best approximate solution is unique if and only if A is
injective.

Next suppose that A € R™*" ie., Ais an m X n matrix of real
entries. Then we know that range space of A, viewing it as a linear
transformation from R™ to R™, is the space spanned by the columns
of A. Suppose u1,...,u, be the columns of A. Then, given y € R™,
a vector zg € R™ is a best approximate solution of Az = y if and
only if Axg — y is orthogonal to u; for ¢ = 1,...,n, i.e., if and only if
ul (Azg—y) =0 fori=1,...,n, ie., if and only if AT (Azy—y) =0,
i.e., if and only if

AT Az = ATy

EXAMPLE 3.16 Let A = [ (1) (1) } and let y = [ (1) ] Clearly, the

-1
is a solution of the equation ATAz = ATy. Thus, zg is a best
approximate solution of Az = y.

. . 1
equation Ax = y has no solution. It can be seen that x¢ = [ }

3.10 QR-Factorization and Best Approximate
Solution

Suppose that A € R™*™ ie., A is an m X n matrix of real entries
with n < m. Assume that the columns of A are linearly independent.
Then we know that, if the equation Ax = y has a solution, then the

solution is unique. Now, let uq,...,u, be the columns of A, and
let v1,...,v, are orthonormal vectors obtained by orthonormalizing
Ui, ..., up. Hence, we know that for each k € {1,...,n},

span{uy,...,ur} = span{vi,..., vg}.
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Hence, there exists an upper triangular n x n matrix R := (a;;) such

that u; = a1v1 + agjva + ... + an;vj, j=1,...,n. Thus,
[ui, ug, ..., up] = [v1, vo, ..., vy]R.
Note that A = [uq, ug, ..., u,], and the matrix Q := [v1, v, ..., Vy]

satisfies the relation

Q'Q=1

Definition 3.13 The factorization A = QR with columns of @
being orthonormal and R being an upper triangular matrix is called
a QR-factorization of A.

We have see that if columns of A € R™*™ are linearly indepen-
dent, then A has a QR-factorization.

Now, suppose that A € R"™*" with columns of A are linearly
independent, and A = QR is the QR-factorization of A. Let y € R™.
Since columns of A are linearly independent, the equation Az = y
has a unique best approximate solution, say xg. Then we know that

AT Azg = ATy,
Using the QR-factorization A = QR of A, we have
RT"Q"QRxo = R"Q"y.
Now, QTQ = I, and RT is injective, so that it follows that
Rz = QTy.

Thus, if A = QR is the QR-factorization of A, then the best approx-
imate solution of Az = y is obtained by solving the equation

Rz = Q1y.

For more details on best approximate solution one may see
http://mat.iitm.ac.in/~mtnair/LRN-Talk.pdf
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Error Bounds and Stability of
Linear Systems

4.1 Norms of Vectors and Matrices

Recall that a norm | - || on a vector space V is a function which
associates each z € V a unique non-negative real number ||z|| such
that the following hold:

(a) Forz eV, |z]|=0 < 2=0
(b) [l +yll <=l + llyll  Vz,y €V,
(©) llez]| = laf||lz]| Ya eF, zeV.

We have already seen that if V' is an inner product space, then
the function z — ||z| := (x,2)"/? is a norm on V. It can be easily
sen that for = = (21,22, ...,2) € R¥,

k
]y = Z; il lalloo = mas fa]
=

define norms on R¥. The norm induced by the standard inner prod-
uct on R* is denoted by || - ||z, i.e.,

k
1/2
2
ol == (D lal?)
j=1
Exercise 4.1 Show that ||z]|e < ||z]l2 < ||z|l1 for every z € RF
Compute |[z]loo, [[#[l2, [|#[[1 for z = (1,1,1) € R

We know that on Cla, b],
b 1/2
Jollai= (w0)/2 = ([ fao)Pat)

74
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defines a norm. It is easy to show that

b
folli= [ la@ldt ol = max fo(t)

also define norms on Cfa, b].

Exercise 4.2 Show that there exists no constant ¢ > 0 such that
|z]|co < ¢||z]]1 for all x € Cla, b].

Next we consider norms of matrices. Considering an n X n matrix
2 . .
as an element of R™, we can obtain norms of matrices. Thus, ana-
n — nxn
logues to the norms || - ||, - [|2, || - [loc o0 R™, for A = (a;;) € R™*™,
the quantities

3N lail, <ZZ\%‘| ) ; 127?};”\%\

i=1 j=1 i=1 j=1

define norms on R™*".
Given a vector norm || - || on R™, it can be seen that

JA] == sup Az,  AeRV,
flz]|<1

defines a norm on the space R™*™. Since this norm is associated with
the norm of the space R", and since a matrix can be considered as
a linear operator on R"”, the above norm on R™*" is called a matrix
norm associated with a vector norm.

The above norm has certain important properties that other norms
may not have. For example, it can be seen that

o [[Az| < [|A|[lz]] VzeR",
o |[Az|| <c|z|]| VzeR" = ||A] <ec,.
Moreover, if A, B € R™" and if I is the identity matrix, then

o [|ABI < [IABI, ]l =1.

Exercise 4.3 Let ||| be a norm on R™ and and A € R"*™. Suppose
¢ > 0is such that || Az|| < c||z]| for all z € R™, and there exists xg # 0
in R™ such that ||Azg|| = ¢||xo||. Then show that || Al = c.
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In certain cases operator norm can be computed from the knowl-
edge of the entries of the matrix. Let us denote the matrix norm asso-
ciated with ||-||; and || -||ec by the same notation, i.e., for p € {1, 0o},

[Allp = sup [|Az[,, ~— A€R™™

l|lzllp<1

Theorem 4.1 If A = (a;;) € R"™", then

[A[ly = max Z laijl, Ao = max Z |aijl-

1<5<n 1<i<n

Proof. Note that for x = (z1,...,z,) € R",

s = 30| Sape| <30 lasll

=1 j=1 =1 j=1
n n

= > (Xtail)layl < ((max Zrau ) Zm\
Jj=1 =1

Thus, HAHl < maxi<;j<n Z?:l |al~j|. AISO, note that HAejﬂl = Z?:l |aij|
for every j € {1,...,n} so that > | |a;;| < ||A|: for every j €

{1,...,n}. Hence, maxi<j<pn iy laij| < ||A]l1. Thus, we have
shown that
Al = max Z .
Next, consider the norm || - || on R™. In this case, for z =
(z1,...,2y) € R™ we have

n
e = pmae |3 angs|
J:

Since
n n

n
> asas| <3 lagl a1 < olloo Y las),
j=1

Jj=1 Jj=1
it follows that

| Az]lo0 < (maxz ais|) ]l
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n
From this we have || Al < max E la;j|. Now, let ip € {1,...,n}
lizn £

be such that [ax Z la;;| = Z laiy;], and let xp = (a1, ..., ap) be
: o
L |a103|/am] if aio; # 0, _
such that a; = { 0 ifa; 5 # 0. Then ||g]|co = 1 and

n n
S laingl = | S aiges| = 1(4z0)i,| < [ Az0]lc < 4]
i=1 j=1

Thus, max Z la;j| = Z |aioj| < ||Alloo. Thus we have proved that

[Alloc = max Z |agj]-

1<i<n
This completes the proof of the theorem. |

What about the matrix norm

|All2 ;== max ||Az|2, A€ R™",
=<1

induced by || - |]2 on R"? In fact, there is no simple representation
for this in terms of the entries of the matrix. However, we have the
following.
Theorem 4.2 Suppose A = (a;;) € R™*". Then
1/2
4 < (323 Jau?)

=1 j=1

If M\, ..., Ay are the (non-negative) eigenvalues of the matriz

AT A, then
|All2 = max. VA
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Proof. Using the Cauchy-Schwarz inequality on R™, we have, for
x=(x1,...,2,) €ER",

n
lAzl} = |3 ayay

IN
(=
—
(3=
E)
<.
T
~
—
=)
<
s
~—
—_

i=1 j=1 j=1
n n
< (DX lawl) el
i=1 j=1
non ) 1/2
Thus, ||A]]2 < (Zme ) .

i=1 j=1
Since AT A is a symmetric matrix, it has n real eigenvalues (may
be some of the are repeated) with corresponding orthonormal eigen-
vectors uj, Uy, ..., u,. Note that, for every j € {1,2,...,n},

Aj = Ajlug ug) = (g, ug) = (AT Auj, ug) = (Auy, Aug) = || Aug®
so that \;” s are non-negative, and |\;| < ||A|| for all j. Thus,

v < AL
nax 5 < |IA4]]

To see the reverse inequality, first we observe that uy, Uy, . .., u, form
an orthonormal basis of R™. Hence, every z € R" can be written as
x=>"_{x,uj)u;, so that

]:1 y 47 7

n n

AT Az = Z(x,uj>ATAuj = Z(a:,uj>)\juj.

j=1 j=1

Thus, we have ||Az|? = (Ax, Az) = (AT Az, z) so that

|Az|? = <Z<x,uj>xjuj,2<x,ui>ui>

j=1 i=1

= > Kz up)P
j=1

< <max )\j> |2
1<j<n

Hence, || A2 < maxi<j<pny/Aj. This completes the proof. |

A
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Exercise 4.4 Find ||A||1, ||Al|co, for the matrix A =

W N =
N W N
— oW

4.2 Error Bounds for System of Equations

Given an invertible matrix A € R™"™ and b € R", consider the
equation
Az =b.

Suppose the data b is not known exactly, but a perturbed data bis
known. Let £ € R™ be the corresponding solution, i.e.,

Az = b.

Then, we have 2 — % = A~ (b — b) so that

N T “1yp iy JAZ]] g lle =Bl
- - AT 1yl — 2]
16=b] < [|A[l lz—z|| = [|A]| lz—Z]| < [ Al AT 161]-
[l ]
Thus, denoting the quantity || Al ||A~!|| by x(A),
Loo=b] _ [lz— 2| Ib — bl
< < k(A) (4.1)
r(A) o] ] 1]l

From the above inequalities, it can be inferred that if k(A) is large,
then it can happen that for small relative error ||b—b||/||b] in the
data, the relative error ||z — Z||/||z|| in the solution may be large. In
fact, there do exist b,B such that

e — 2] 15— B
= k(A ,
STy

]

where z, # are such that Az = b and A% = b. To see this, let z¢ and
u be vectors such that

1Azoll = ANl lwoll, — [1A™ ull = AT [Jul],

and let }
b:=Axg, b:=b+u, I:=mxo+ A lu.
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Then it follows that A% = b and

lwo — @ _ Al ATl JAITA™ ]l (A)

_ =
lool ~ Twoll ~ ol | Aol

1]

The quantity x(A) := ||A||[|[A™!|| is called the condition num-
ber of the matrix A. To illustrate the observation in the preceding
paragraph, let us consider

. 1 14+¢ . bl
Sl FE B b

It can be seen that

1 1 —1—¢ 110
-1_ + S PR B |
A _62|:1+6 1 ] so that z=A""b 5{62]'
From this, it is clear that, if € is small, then for small ||b]|, ||z|| can
be very large. In this case, it can be seen that

_ 1
llle =242, 147 oo = (2 =), w(4) = (

24eN\2 4
) >
€ €
In practice, while solving Az = b by numerically, we obtain an
approximate solution Z in place of the actual solution. One would
like to know how much error incurred by this procedure. We can
have inference on this from (4.1), by taking b := Az.

Exercise 4.5 Let A € R™ " be an invertible matrix. Then there ex-
ist vectors x, u such that || Axg|| = || Al ||zo| and ||A~ u| = |A7Y| ||ul|
— Justify.

Exercise 4.6 1. Suppose A, B in R™ ™ are invertible matrices,
and b,b are in R". Let x,Z are in R" be such that Az = b and
Bz = b. Show that

| — | “y(IA=BI | lb—b]
<A+ )

[Hint: Use the fact that B(x — %) = (B — A)z + (b — l~)),~and
use the fact that |[(B — A)z| < ||B — Al|||lz][, and [|b —b] =
[[b = bll[[Az|[/l|b]l < (16— bIILAI] l[| /[[b]]-]

2. Let B € R™™. If | B|| < 1, then show that I — B is invertible,
and [|(I - B)~!| < 1/(1 — || B]).

[Hint: Show that I — B is injective, by showing that for every
z, |(I = B)z|| > (1 — ||B]])||z||, and then deduce the result.]
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3. Let A, B € R™"™ be such that A is invertible, and [|[A — B|| <
1/||[A=Y||. Then, show that, B is invertible, and

a7
A= B |A~H]]
[Hint: Observe that B = A — (A — B) = [I — (A — B)A71]A,

and use the previous exercise. |

1B~ <
1—

4. Let A, B € R™" be such that A is invertible, and ||A — B|| <
1/2||A~Y|. Let b,b,z,% be as in Exercise 1. Then, show that,
B is invertible, and

: lA-B| b5
< 2k(A +
2l O )

[Hint: Apply conclusion in Exercise 3 to that in Exercise 1.]
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Additional Exercises

In the following V' denotes a vector space over IF which is R or C.

1.

Let V be a vector space. For z,y € V, show that x +y = =
implies y = 6.

Suppose that x € V is a nonzero vector. Then show that
ax # Bx for every «, 8 € F with o # .

Let R[a,b] be the set of all real valued Riemann integrable
functions on [a, b]. Show that R]a,b] is a vector space over R.

Let V' be the set of all polynomials of degree 3. Is it a vector
space with respect to the usual addition and scalar multiplica-
tion?

Let S be a nonempty set, so € S. Show that the set V of all
functions f : S — R such that f(sp) = 0 is a vector space
with respect to the usual addition and scalar multiplication of
functions.

Find a bijective linear transformation between F"* and Pj,41.

In each of the following, a set set is given and some operations
are defined. Check whether V is a vector space with these
operations:

(i) Let V = {z = (21,72) € R? : 29 = 0} with addition and
scalar multiplication as in R2.

(i) Let V = {z = (x1,72) € R? : 221 + 322 = 0} with addition
and scalar multiplication as in R2.

(iii) Let V = {x = (21,72) € R? : 1 + x5 = 1} with addition
and scalar multiplication as for R2.

82
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(iv) Let V. = R2, F = R. For z = (z1,22), ¥y = (y1,%2), let
x4y :=(x1+ y1,z2 + y2) and for all a € R,

o __{ (0,0) a =0,
"\ (amy,r2/a), a#0.

(v) Let V=C% F =C. For z = (21,22), ¥y = (y1,%2), let

r+y:= (r1+2y1,22+3y2) and ax:= (azx;,ars) VaeC.

(vi) Let V =R2 F =R. For x = (z1,22), y = (y1,¥2), let

r+y:=(r1+vy,r2+y2) and ax:=(r1,0) YaeR.

Let A € R™ ™, O is the zero in R™!. Show that the set Vj of
of all n x 1 matrices X such that AX = O, is a subspace of
Rnx1.

Suppose Vj is a subspace of a vector space V, and V; is a
subspace of Vj. Then show that Vj is a subspace of V.

Give an example to show that union of two subspaces need not
be a subspace.

Let S be a subset of a vector space V. Show that S is a subspace
if and only if S = span S.
Let V be a vector space. Show that the the following hold.

(i) Let S be a subset of V. Then span S is the intersection of
all subspaces of V' containing S.

(ii) Suppose Vj is a subspace of V and xy € V such that o ¢
Vo. Then for every x € span{zg; Xo}, there exist a unique
a €, y eV, such that x = axg + y.

Show that

(a) P, is a subspace of Py, for n < m,

(b) Cla,b] is a subspace of R|a, b],

(c) C*¥[a,b] is a subspace of C[a, b].
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14

15

16.

17.

18.

19.

Additional Exercises

For each A in the open interval (0,1), let uy = (1,\,A\2,...).
Show that uy € ¢! for each € (0,1), and the set {uy : 0 < A <
1} is a linearly independent in ¢!. Infer that every basis of the
spaces ¢g, ¢, £°° is an uncountable set.

Let A be an m x n matrix, and b be a column m-vector. Show
that the system Ax = b has a solution n-vector if and only if
b is in the span of columns of A.

Let e; = (1,0,0), e2 = (0,1,0), e3 = (0,0,1). What is the span
of {e1 +ea,e2 + €3,e3+€1}7

Let S be a subset of a vector space V. Show that S is a subspace
if and only if S = span S.

Let V be a vector space. Show that the the following hold.
(i) Let S be a subset of V. Then

span S = ﬂ{Y .Y is a subspace of V' containing S}.
(ii) Suppose V} is a subspace of V and xy € V' \ V. Then for

every x € span{zo; Xo}, there exist a unique o € F, y € 1
such that r = axg+y. ¢

Consider the system of equations

a1, + ai12x2 + + A1ndn = bl
as1r1  +  axre + + ar, = b
+ + + =
am1T1 + amiT2 + + @mnTn = bnm
Let
aii ai2 A1n
L a1 L a2 L a2n
Uy 1= , U 1= e Uy =
am1 am2 Qmn,

(a) Show that the above system has a solution vector x =
[z1,...,2,)" ifand only if b = [by, ..., b,]T € span({u1, ..., u,}.
b) Show that the above system has atmost one solution vector
x = [r1,...,7,)7 if and only if {uy, ..., u,} is linearly indepen-
dent.
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Show that every superset of a linearly dependent set is linearly
dependent, and every subset of a linearly independent set is
linearly independent.

Give an example to justify the following: FE is a subset of vector
space such that there exists an vector u € E which is not a
linear combination of other members of E, but E is linearly
dependent.

Is union (resp., intersection) of two linearly independent sets a
linearly independent?

Is union (resp., intersection) of two linearly dependent sets a
linearly dependent?

Show that vectors u = (a, c), v = (b, d) are linearly independent
in R? iff ad — be # 0.

Show that Vy := {z = (x1,22,23) : 1 + 22 + 23 = 0} is a
subspace of R3. Find a basis for V.

Show that E 1= {1 + "t + "t + ", ... t" L + " 1"} is a
basis of P,,.

Let uq, ..., u, are linearly independent vectors in a vector space
V. Let [aj;] be an m x n matrix of scalar, and let

V1 = ajju1 + aous + ... +  GpmlUn
Vo = ajpur + axu2 + ... +  Gm2Upn
+ ...+ .+
Up = Q1pU1 + aopnua + ... 4+ AmplUp-
Show that the vy,...,v,, are linearly independent if and only

if the vectors

ail ai2 Aln
L a1 L a2 L am?2

wy 1= , Wy = e, Wy =
am1 am?2 Gmn,

are linearly independent. ¢

Let ui(t) =1, and for j =2,3,..., let u;j(t) =1+t +... +t.
Show that span of {ui,...,uy} is Py, and span of {ui,ug,...}
is P.
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29

30.

31.

32.

33.

34.

Additional Exercises

Let pi(t) = 1+t +3t%, pa(t) = 2+ 4t + 12, p3(t) = 2t + 5t°.
Are the polynomials py, p2, p3 linearly independent? ¢

Show that a basis of a vector space is a minimal spanning set,
and maximal linearly independent set.

Suppose V7 and V5 are subspaces of a vector space V' such that
Vi NV, = {0}. Show that every x € Vj + V5 can be written
uniquely as x = x1 + xo with z1 € V1 and xo € V5.

Suppose Vi and V5, are subspaces of a vector space V. Show
that V4 + Vo = V7 if and only if V5 C V.

Let V be a vector space.

(i) Show that a subset {uy,...,uy,} of V is linearly independent
if and only if the function (aq,...,ap) — ajug + -+ + apuy,
from F™ into V is injective.

(ii) Show that if E C V is linearly dependent in V', then every
superset of F is also linearly dependent.

(iii) Show that if E C V is linearly independent in V', then
every subset of E is also linearly independent.

(iv) Show that if {u,...,u,} is a linearly independent subset
of V, and if Y is a subspace of V such that (span {uy,...,u,})N
Y = {0}, then every V in the span of {uq,...,u,, Y} can be
written uniquely as * = aqui+- - -+ u,+y with (o, ..., o) €
", ycyY.

(v) Show that if Fy and Es are linearly independent subsets
of V such that (span E1) N (span E2) = {0}, then E; U Ej is
linearly independent.

For each k € N, let F* denotes the set of all column k-vectors,
i.e., the set of all £ x 1 matrices. Let A be an m x n matrix of
scalars with columns a;,as,...,a,. Show the following:

(i) The equation Az = 0 has a non-zero solution if and only if
ay, s, . ..,a, are linearly dependent.

(ii) For y € F™, the equation Az = y has a solution if and only
if ay,ay,...,a,,y are linearly dependent, i.e., if and only if y is
in the span of columns of A.
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Fori=1,...,m;j=1,...,n,let E;; be the m xn matrix with
its (4, 7)-th entry as 1 and all other entries 0. Show that

{Eij:i=1...,m;j:1,...,n}
is a basis of F™*",

If {uy,...,u,} is a basis of a vector space V, then show that
every x € V, can be expressed uniquely as x = ajui+- - -+apin;
i.e., for every x € V, there exists a unique n-tuple (a1, ..., ay)
of scalars such that £ = aju; + - - - + auy,.

Suppose S is a set consisting of n elements and V' is the set of
all real valued functions defined on S. Show that V' is a vector
space of dimension n.

Let tg,t1,...,t, be in [a,b] such that a = tp < t; < ... <
tn, = b. For k € N, let X}, be the set of all those functions
z € C([a,b],R) such that the restriction of z to each interval
[tj—1,t;] is a polynomial of degree atmost k. Then show that
Xk, is a linear space over R. What is the dimension of X} ,,?

Given real numbers ag, a1, ..., ax, let X be the set of all solu-
tions z € C*[a, b] of the differential equation

dFx dk—1g

aoﬁ+a1W+---+ak9€:0.

Show that X is a linear space over R. What is the dimension
of X7

Let to,t1,...,t, be in [a,b] such that a =ty <t1 < ... <1, =
b. For each j € {1,...,n}, let u; be in C([a, b], R) such that

) 1 ifi=j
u;(ti) =
! 0 ifij,

and the restriction of u; to each interval [t;_1,t;] is a polyno-
mial of degree atmost 1. Show that the span of {uy,...,u,} is
the space X, in Problem 38.

The spaces cog, co, {1, °°, P, Cla,b],R[a,b] are all infinite di-
mensional spaces — Why?
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42.

43.

44.

45.

46.

47.

48.

49.

Additional Exercises

State with reason whether T : R? — R? in each of the following
is a linear transformation:

(a) T(x1,22) = (1,22), (b) T(w1,22) = (w1,23)
(¢) T(z1,22) = (sin(x1),x2) (d) T(z1,22) = (21,2 + x2)

Check whether the functions T in the following are linear trans-
formations:

(i) T : R? — R? defined by T'(z, y) = (2:E +y,z+y?).
(i) 7: C'[0,1] — R defined by T(u) = [ [u(t)]?dt.

(i) T: C'[~1,1] — R? defined by T(u) - ( ff u(t)dt, u'(O)).
(iii) 7 : C'[0,1] — R defined by T fo

Let T7 : Vi — V5 and 15 : V5 — V3 be linear transformations.
Show that the function T": Vi — V3 defined by Tz = To(T1x),
x € V1, is a linear transformation.

[The above transformation 7" is called the composition of T
and T, and is usually denoted by T577.]

If Ty : CY0,1] — C[0,1] is deﬁned by Ti(u) =, and T5 :
C[0,1] — R is defined by Ty (v fo t)dt, then find T5T}.

Let Vi1, V5, V3 be finite dimensional vector spaces, and let Eq,
FE>, E3 be bases of Vi, Vo, V3 respectively. If 77 : Vi3 — V5
and 15 : Vo — V3 are linear transformations. Show that
(1214 5y s = [12) s s [T1] B4 s -

If Th : Pnl0,1] — P,[0,1] is deﬁned by Ti(u) = o/, and Ty :
P,]0,1] — Ris defined by Th(v fo t)dt, then find [Tl]E1 Fas
[TQ]E27E3, and [TQTl]El,E37 Where E1 = EQ = {1 t t2 tn}
and F3 = {1}.

Justify the statement: Let T} : V3 — V5 be a linear transforma-
tion. Then T is bijective iff there exists a linear transformation
T : Vo — Vi such that 11715 : Vo — V5 is the identity transfor-
mation on V5 and 1517 : V4 — Vi is the identity transformation
on Vj.

Let V1 and V5 be vector spaces with dimV; = n < oco. Let
{u1,...,u,} be a basis of Vi and {vi,...,v,} C Vo. Find a
linear transformation 7" : Vi — V3 such that T'(u;) = v; for
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j=1,...,n. Show that there is only one such linear transfor-
mation.

Let T be the linear transformation obtained as in the above
problem. Show that

(a) T is one-one if and only if {v1,...,v,} is linearly indepen-
dent, and

(b) T is onto if and only if span ({v1,...,v,}) = Va.

Let T : R2 — R2 be the linear transformation which satisfies
T(1,0) =(1,4) and T'(1,1) = (2,5). Find the T'(2,3).

Does there exists a linear transformation 7 : R3 — R2 such
that 7(1,0,2) = ((1,1) and 7(1/2,0,1) = ((0,1) ?

Show that if V7 and V5 are finite dimensional vector spaces
of the same dimension, then the there exists a bijective linear
transformation from V; to V5.

Find bases for N(T') and R(T) for the linear transformation 7'
in each the following:

(a) T :R? — R? defined by T'(x1,22) = (11 — 72, 272),

(b) T :R? — R3 defined by T'(z1,22) = (z1 + 22,0, 273 — 22),
(¢c) T : R™™™ — R defined by T(A) = trace(A). (Recall that
trace of a square matrix is the sum of its diagonal elements.)
Let T : Vi3 — V5 is a linear transformation. Given reasons for
the following:

(a) rank(T") < dimV;.

(b) T onto implies dimV, < dimVj,

(¢) T one-one implies dimV; < dimVs

(d) Suppose dimV; = dimV, < oco. Then T is one-one if and

only T is onto.

Let Vi and V5 be finite dimensional vector spaces, and F; =
{u1,...,un} and Ey = {v1,...,vn} be bases of V; and V3,
respectively. Let F1 = {f1,..., fn} be the dual basis of L(V},F)
with respect to Ey and Fy = {g1,...,9n} be the dual basis of
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L(Va,F) with respect to Ey. Fori=1,...,n;7=1,...,m, let
T;j - V — W defined by

Tij(z) = fj(x)vi, @€ W

Show that {T;; : ¢« = 1,...,n;j = 1,...,m} is a basis of
L(V1, V).

57. Let T : R?® — R3 be defined by
T(x1,%2,23) = (T2 + T3, 23 + 21,71 + T2),  (T1,T2,73) € R®.
Find the matrix representation of 1" with respect to the basis
given in each of the following.
(a) By = {(1,0,0),(0,1,0), (0,0, 1)}, Bz = {(1,0,0), (1,1,0), (1,1, 1)}
(b) E; ={(1,0,0),(1,1,0),(1,1,1)}, B2 = {(1,0,0),(0,1,0),(0,0,1)}
(c) By ={(1,1,-1),(-1,1,1),(1,-1,1)},
Ey, ={(-1,1,1),(1,-1,1),(1,1,-1)
58. Let T : P3 — P2 be defined by T(ag + ait + ast® + ast?) =

a1 + 2ast + 3ast®. Find the matrix representation of T with
respect to the basis given in each of the following.

(a) By = {1,t,t2 13}, By = {1 +t,1 —t,t?}

(b) By ={1,1+t,1+t+t2 3}, By ={1,1+¢,1+t+t2}

(c) By ={1,1+t, 1 +t+t2 1+t + 12+ 13}, By = {t?,t,1}
59. Let T : P? — P3 be defined by T(ag + a1t + ast?) = (aot +

“2—1t2 + %t‘g). Find the matrix representation of T' with respect
to the basis given in each of the following.

(a) By = {1+t,1—t,t*}, By = {1,t, 1% 13},

) Ey = {1,1+t, 1+t +12}, By ={1,1+¢,1+t+123},

(c) By ={t?,t,1}, By = {1, 1 +t,1 +t + 12,1+t + 1% + 13},
60. A linear transformation T : V — W is said to be of finite rank

if rank T < oo.

Let T : Vi — V4 be a linear transformation between vector
spaces V7 and V5. Show that T is of finite rank if and only
if there exists n € N, {v1,...,v,} C Vo and {f1,...,fn} C
L(V1,F) such that Az = >7"_, fj(x)v; forallz € Vi. 4
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Let Vi and V5 be inner product spaces with inner products
(-, )1 and (-, -)2 respectively. One V =V} x Va, define

((z1,22), (Y1, ¥2))v := (w1, y1)1+(T2, y2)2, V(z1,22), (y1,92) € V.

Show that (-,-)y is an inner product on V.

Let (-,-)1 and (-,-)2 are inner products on a vector space V.
Show that (x,y) := (x,y)1 + (x, y)2 defines another inner prod-
uct on V.

For z,y in an inner product space V, show that (z+y) L (z—y)
if and only if ||z|| = [|y|.

Let V be an inner product space. For S C V, let
St={zeV:(x,u)=0 YueS}

Show that

(a) St is a subspace of V.

(b) V+={0}, {o}t=V.

(c) Sc S+

(d) If V is finite dimensional and V{ is a subspace of V| then
Vit = Va.

Find the best approximation of z € V' from V{; where

(a) V=R3 z:=(1,2,1), V:=span{(3,1,2),1,0,1)}.

(b) V =R3, z:=(1,2,1), and V; is the set of all (ay, as, a3)
in R* such that a1 + ag + ag = 0}.

(c) V=R* z:=(1,0,—-1,1) V, :=span {(1,0,—1,1), (0,0,1,1)}.
(d) V=0C[-1,1], z(t) = €', Vo =Ps.

Let A € R™*"™ and y € R™. Show that, there exists z € R"”
such that [|[Az — y|| < [[Au = y|| for all u € R™, if and only if
AT Az = ATy,

Let A € R™"™ and y € R™. If columns of A are linearly

independent, then show that there exists a unique z € R" such
that AT Az = ATy,
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68.

69.

70.

71.

72.

73.

74.

Additional Exercises

Find the best approximate solution (least square solution) for
the system Az = y in each of the following:

(3 1 1
(a) A=1]1 2 [; Y= 0
2 -1 —2
111 0
-1 0 1 1
Bra=1 0 4 oF YT
0 1 -1 -2

Show that ||7]e < ||lz]l2 < [|z|1 for every z € RF.

Find ¢y, ¢, c3, ¢4 > 0 such that
allzlla < [zl < c2llella,  esllzlh < |zl < callzfloe Vo € RE.

Compute ||z]|so, ||2]|2, ||z||1 for z = (1,1,1) € R3.

Show that there exists no constant ¢ > 0 such that ||z|. <
c||lx||1 for all x € Cla,b).

Let || - || be a norm on R™ and and A € R"*". Suppose ¢ > 0 is
such that ||Az| < c|jz|| for all x € R™, and there exists xzg # 0
in R" such that ||Azg|| = c||zo]|. Then show that [|A|| = c.

1
Find [|A]]1, ||Allco, for the matrix A = | 2
3

N W N
— o W

Suppose A, B in R™*" are invertible matrices, and b, Z) are in
R™. Let x,Z are in R™ be such that Ax = b and BZ = b. Show
that

= — 2|

lA=BJ | Hb—b|l>
] 1A]] 2]

[Hint: Use the fact that B(x — %) = (B — A)z + (b — I;),Nand

use the fact that [[(B — A)z|| < ||B — A [|z]|, and [[b — b =

16— bll{[lAz]l/l[oll < 1o — bl Al 1= /1[b[]-]

< Al (

Let B € R™*™. If ||B|| < 1, then show that I — B is invertible,
and [|(I - B)~!| < 1/(1 — || B]).

[Hint: Show that I — B is injective, by showing that for every
z, |(I = B)z|| > (1 — ||B]])||z||, and then deduce the result.]
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76.
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78.

79.

80.
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Let A, B € R™"™ be such that A is invertible, and [|[4A — B|| <
1/||[A=Y||. Then, show that, B is invertible, and

1A~
1—[[A= B[ [[A=H"
[Hint: Observe that B = A — (A — B) = [I — (A — B)A 1A,
and use the previous problem.]

1B~ <

Let A, B € R™ " be such that A is invertible, and [|A — BJ| <
1/2||A71|. Let b,b,x, 7 be as in Problem 73. Then, show that,
B is invertible, and

e — &l lA-B| b5
< 2x(A + .
2l O )

[Hint: Apply conclusion in Problem 75 to that in Problem 73]

Suppose uq, . .., u, are functions defined on [a, b], and t1, ..., t,
are points in [a,b]. Let f1,...,[3, are real numbers. Then
show that there exists a unique ¢ € span {uy, ..., u,} satisfying

@(t;) = B; for i = 1,...,n if and only if the matrix [u;(t;)] is
invertible.

Suppose u1, . .., u, are functions defined on [a, b], and ¢y, ..., t,
are points in [a, b]. Show that, if the matrix [u;(¢;)] is invertible,
then wuq, ..., u, are linearly independent.

Hint: A square matrix is invertible if and only if its columns
are linearly independent.

Suppose u1, . .., u, are functions defined on [a, b], and ¢y, ..., t,
are points in [a, b] such that the matrix [u;(¢;)] is invertible. If
v1,. .., U, are linearly independent functions in span {uq, ..., uy},

then show that the matrix [v;(¢;)] is also invertible.

Hint: Let Xo := span{ui,...,u,} and [u;(t;)] is invertible.
Then observe that, the function J : Xy — R™ defined by J(x) =
[z(t1),...,z(t,])7 is bijective.

Let tq,...,t, be distinct points in R, and for each j € {1,2,...,n},

let £;(t) =1, ti'__ttii' Then show that {¢1,...,£,} is a basis of
Pn—1, and it satisfies £;(¢;) = d;; for all 4,5 = 1,...,n. Deduce
from the previous exercise that the matrix [t;fl} is invertible.



